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1 Introduction

Whether reducing class size raises academic performance is a longstanding de-
bate in empirical economics and policy discussions (Mishel and Rothstein 2002).
While early observational studies pointed towards a small or null effect of class
size, results from the Tennessee’s Student Teacher Achievement Ratio (STAR) ex-
periment suggested otherwise. The experiment, conducted between 1985 and
1989, randomized kindergarten students at participating public schools into one
of three class types: small, regular, and regular with a teacher’s aide. Multiple
evaluations of STAR demonstrated significantly higher test scores for students at-
tending the small class type, leading many researchers to conclude that class size
reductions generated causal gains in student learning (Folger and Breda 1989,
Finn and Achilles 1990, Word et al. 1990, Schanzenbach 2006).

The findings from STAR inspired policymakers in various states to implement
large-scale class size reductions. But these policies, such as Tennessee’s Project
Challenge in 1989 and California’s Class Size Reduction law in 1996, saw disap-
pointing results.1 Prior research has showed how the null effects of these two
policies can be explained by either a decline in teacher quality or by insufficient
class size reductions in schools (Hippel and Wagner 2018; Jepsen and Rivkin
2009). Our paper instead focuses on an overlooked aspect of the debate sur-
rounding STAR and the scaling of experimental interventions. We ask whether
and to what extent it is possible to learn about the scalability of class-size polices
from the STAR experimental data itself.

We argue that the reduced-form evaluation and the two-stage least squares (2SLS)
estimator commonly used in prior analyses are poorly-aligned with the STAR
experimental design, thereby limiting the ability of researchers to learn about
the intervention’s scalability from the experimental data. STAR randomized stu-
dents into different class types. But, class types are not the same as class sizes,
and school principals had some discretion in choosing target sizes for each class
type. We document substantial heterogeneity in compliance, with different schools

1Project Challenge produced few benefits (Achilles et al. 1995; Hippel and Wagner 2018), and
initial analysis of California’s law found no effect of the statewide average reduction in class size
of ten students (Bohrnstedt and Stecher 1999, 2002; Stecher and Bohrnstedt 2000).
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targeting both heterogeneous sizes (doses) and heterogeneous class-size reduc-
tions between treatment and control arms. In this context, reduced-form esti-
mates conflate heterogeneous doses and impact effects. The 2SLS estimator in-
stead identifies a weighted average of school-specific effects, but these weights
depend on each school’s endogenous compliance with the experimental design.
Neither estimator identifies the policy-relevant relationship between class size
and test scores, which is crucial for scaling class-size initiatives.

We therefore develop and apply a new econometric method that is better-aligned
with the realities of STAR’s implementation. We allow class size targets and the
heterogeneous effects of class size on test scores to be jointly determined by a
low-dimensional set of latent parameters. We classify schools into groups based
on similar values of these latent parameters. The classification works so that
class size targets and impact effects are independent within each group, but they
may vary across groups, thereby allowing for grouped selection on unobserved
gains. We use a Grouped Random Effects (GRE) methodology to simultaneously
group schools and estimate parameters that govern the distribution of compli-
ance behavior and impact effects (Adusumilli 2020). The number of groups is
determined through an information criterion (BIC). BIC selects three groups as
optimal.

Our method uncovers sharp differences in the effectiveness of class size reduc-
tions across schools. Nearly all of the gains from reducing class size in STAR are
driven by 29% of the schools in the sample. In this set of schools, a one-student
reduction in class size causes a 0.09 standard deviation (sd) improvement in test
scores. The relationship between class size and test scores is modest in the re-
maining 71% of schools. In fact, if the 29% of highly sensitive schools had been
omitted from the experiment, 2SLS would have failed to detect any causal effect
of class size on test scores.

We also find evidence of heterogeneous compliance. All schools under-complied
with the intended experiment by creating class-size reductions that were too
small. Additionally, schools with larger impact effects in absolute magnitude
under-complied even further. We simulate counterfactual intended implementa-
tions of STAR – with treated class sizes ranging from 13 to 17 students, control
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class sizes of between 22 and 25 students, and uniform compliance across schools
– and find that it would have generated 18% larger test score gains.

Our analysis of the experimental data reveals both the challenges and opportu-
nities in learning about scaling from the STAR intervention. Potential challenges
include marked heterogeneity in impact effects across schools and the fact that
schools with larger impact effects, whether positive or negative, exhibited lower
compliance in reducing class sizes. We decompose the policy-relevant treatment
effect, introduced in Heckman and Vytlacil (2001), into weighted sums of group-
specific impact effects and group-specific compliance. A scaled-up version of the
STAR experiment could therefore be undermined if a new population has a small
proportion of schools with high impact effects (different weights) or low compli-
ance. We show how researchers can forecast these weights in new populations
by exploiting site-specific covariates to predict group membership as uncovered
by the GRE model. Population heterogeneity can then turn into an opportunity
rather than a challenge. If schools with high impact effects can be precisely iden-
tified, targeted interventions emerge as a cost-effective alternative to universal
policies. To demonstrate this, we simulate a version of the STAR experiment that
reduces class size at only the schools with the highest impact effects. Such an
intervention would have generated test score gains that were 10.3% larger than
the actual experiment while reducing the Black-white test score gap by 76.7% as
much as the original experiment.

Related Literature. An extensive empirical literature uses observational and
quasi-experimental designs to estimate the effect of class size on students’ ed-
ucational outcomes. The results are mixed, and there is debate over whether
class size truly matters. For example, Card and Krueger (1992a) find that men
have a higher return to schooling in states with higher quality schools (including
lower pupil/teacher ratios).2 On the other hand, Heckman, Layne-Farrar, and
Todd (1995) argue that these effects vanish once the empirical model allows for
nonlinear effects of school quality on students. Hanushek (1997) argues that the
relationship between school quality and student achievements becomes insignif-

2Card and Krueger (1992b) find that the improvement in the quality of Black schools for the
cohort of Southern-born men in 1960, 1970 and 1980 explained 20% of the narrowing of the Black-
white earnings gap during the same period of time.
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icant once researchers account for the heterogeneity in family inputs. Angrist
and Lavy (1999) exploit the Maimonides’ rule of classroom composition in Israeli
public schools and find that class-size reductions have positive effects for fourth
and fifth graders, but not for third graders. However, this finding is re-evaluated
in Angrist et al. (2019) with more recent data and a larger sample, and the authors
report that the effect of class-size reduction is now close to 0 for all grades. Hoxby
(2000) exploits idiosyncratic variation in cohort population sizes to estimate the
effect of class size on student learning and finds no effect. Rivkin, Hanushek, and
Kain (2005) compare the relative importance of teachers and school quality and
conclude that teacher quality matters more for children’s academic achievement.

Analysis of the STAR experiment appears to rebut this conclusion. Multiple eval-
uations of STAR find positive short- and long-term effects on test scores and edu-
cational attainment for children who were randomly assigned to smaller classes.
Because of the random assignment, results from STAR have been used to reinter-
pret previous research on the topic and to provide strong arguments in support
of policy proposals to reduce pupil/teacher ratios (see Krueger 1999, Krueger
and Whitmore 2001, Schanzenbach 2006, Chetty et al. 2011). We argue, however,
that these prior analyses of the STAR experiment do not take compliance hetero-
geneity into account, and this therefore limits the extent to which the conclusions
drawn there are informative about a scaled-up version of the intervention.

Our work contributes to the growing literature that studies the ability of field
experiments to inform policy decisions at scale. List (2022) tells the history of at-
tempts to scale experimental interventions and highlights many potential pitfalls.
Heckman (1992) discusses how endogenous selection into field experiments im-
pacts the external validity of the estimated impacts. Gechter et al. (2023) consider
the problem of a decision maker who wants to select sites for an RCT to maximize
external validity. By treating STAR as a series of school-specific mini experiments,
our GRE approach shows how the experimental data itself can inform both the
threats and opportunities to scale their intervention in new contexts.

On the methodological side, our work is related to the large and growing liter-
ature on clustering methods and the EM algorithm. Bonhomme and Manresa
(2015) and Bonhomme, Lamadon, and Manresa (2022) introduce Grouped Fixed

4



Effects (GFE) for panel data models. GFE categorizes units into groups so that
each group has the same value of unobserved heterogeneity. Grouped Random
Effects instead allows the distribution of unobserved heterogeneity to vary across
groups. GFE is a special case of GRE, in which the random parameters are con-
strained to have no variance.

We use GRE over GFE for three reasons: First, it enables us to jointly model
school-specific class size targets and treatment effects, which allows for corre-
lation between compliance and impact effects across schools. Second, GRE es-
timates are more precise as they require fewer groups. GRE clusters observa-
tions so that the unobserved heterogeneity is approximately independent of the
covariates within each group, which is weaker than requiring unobserved het-
erogeneity to be constant within each group as in GFE. Hence, it requires fewer
groups, or, equivalently, produces smaller bias with the same number of groups.
It also allows us to use posterior averaging to get better estimates of the marginal
effects. Third, GRE simultaneously computes both the group assignments and
estimates of group-specific parameters. By contrast, Bonhomme, Lamadon, and
Manresa (2022) suggest a two-step method, which requires specifying moments
for the first-stage group assignments and can be less accurate than one-step meth-
ods. Bonhomme and Manresa (2015) suggest a one-step method for linear panel
data models, but our setting is nonlinear due to the need to model class sizes.

The GRE approach uses a modified version of the EM algorithm for computation,
termed EAMP. This algorithm is closely related to recent developments in com-
puter science on variational inference (see, e.g., Blei, Kucukelbir, and McAuliffe
2017), and the interpretation of EM as a variational optimization problem (Neal
and Hinton 1998, Bergman et al. 2019).

The Grouped Random Effects framework shares similarities with empirical Bayes
estimation common in the literature on teacher value-added (Chetty, Friedman,
and Rockoff 2014), neighborhood fixed effects (Bergman et al. 2019), and firm-
level estimates of racial discrimination (Kline and Walters 2021; Kline, Rose, and
Walters 2022). In these papers, a Gaussian prior is used to shrink individual es-
timates in order achieve lower MSE in the aggregate. Our GRE method employs
Gaussian priors for the treatment effects as well, but we allow the prior param-
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eters to vary across groups and we shrink school-specific treatment effects to-
wards group-specific priors. This allows for greater flexibility in capturing com-
plex patterns of unobserved heterogeneity. Additionally - and this is different
from the empirical Bayes approach - we simultaneously shrink the estimates of
both school-specific treatment effects and first stage compliance. Empirical Bayes
estimation can thus be considered a special case of our approach.

2 Evaluation of STAR with Endogenous Class Size Reduction

2.1 The Tennessee STAR Experiment

Project STAR was a four-year longitudinal study of elementary school children in
Tennessee between 1985 and 1989. In 1985 schoolchildren entering kindergarten
at seventy-nine participating elementary schools were randomly allocated to one
of three class types: small, regular, and regular with the addition of a teacher’s
aide. Teachers were randomly assigned to separate classes. The target size for
the small classes was between thirteen and seventeen students, while the target
size for the other two class types was between twenty-two and twenty-five stu-
dents. Actual class size sometimes deviated from these targets due to schoolroom
capacity constraints and attrition from participating schools.

The experimental design called for students to remain in the same class type
through the third grade. However, a variety of reasons including sample at-
trition, behavioral issues, and parental complaints, led many students initially
randomized into a small class to attend another class type in later grades or drop
out of the experiment altogether. Of the 1,900 children initially randomized into
a small class in kindergarten, only 857 (45%) attended a small class for all four
years.3 For this reason, we analyze the effects of class size on academic perfor-
mance in kindergarten only, before any potentially endogenous reallocations of
students to different class types may have taken place.4

3Further details about the experimental design are provided in Boyd-Zaharias et al. (2007).
4Prior research has found that assignment to the Regular + Aide group had no discernible

effect on academic performance, so we omit this group from the analysis and concentrate instead
on the small- and regular-sized class types (Finn and Achilles 1990, Word et al. 1990, Folger and
Breda 1989). Appendix C shows that we find similar results when pooling together regular and
regular + aide classrooms.
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At the end of each year of the experiment, students were given a range of cog-
nitive and noncognitive evaluations. We focus on three cognitive tests adminis-
tered to the students at the end of kindergarten: the Stanford Achievement Tests
(SAT) in math, reading, and word skills. The SAT uses item response theory to
facilitate comparisons across students and across years for the same student. Our
dependent variable is a simple average of scores on these three exams. For the
2.3% of students with scores on only one or two exams, we construct their mean
score as the average of the available scores.

Project STAR collected additional demographic information on students and their
teachers. These include information on student race, gender, whether students
qualified for a free or reduced price lunch (a typical proxy for low family income),
absences from school, as well as teacher demographic information and qualifica-
tions. Krueger (1999) show that the treatment and control groups in kindergarten
do not differ by these observable characteristics, suggesting that the initial ran-
domization of students into classroom types was not compromised.

Figure 1a illustrates the distribution of class sizes in kindergarten, where the
smaller "treated" classes comprised twelve to seventeen students, and the regular
"control" classes ranged from sixteen to twenty-seven students. Despite the bi-
nary classification created by the experiment, class size is a continuous treatment
variable, and we will use the term dose throughout the text to stress this. Fig-
ure 1b illustrates the heterogeneity in dose reductions across schools. Although
the average reduction in class size between control and treatment classrooms is
seven students, the figure demonstrates that dose reductions varied considerably
across schools, ranging between zero and twelve students. The next two sections
address (i) how this heterogeneous compliance influences the interpretability of
past estimates of class-size effects from the STAR experiment; and (ii) the degree
to which heterogeneous compliance affects the STAR experiment’s ability to in-
form the scalability of class-size reductions in new contexts.

2.2 The Implications of the Endogenous Class Size Reduction

Prior studies have claimed that the random assignment of students to different
class types in the STAR experiment means that findings from STAR are more
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Figure 1: Distribution of Class Sizes and Class-Size Reductions

(a) Distribution of Class Sizes (b) Compliance Heterogeneity

Panel (a) plots the number of kindergarten classes of each size for regular and small classes
in the Tennessee STAR experiment. Panel (b) plots the average difference in size between
small and regular classrooms at each school.

credible than earlier observational studies which had yielded contrasting conclu-
sions on the effects of class size (Schanzenbach 2016).5 The first wave of studies
evaluated the reduced form of the STAR randomization by estimating specifica-
tions like the following:

yis = β0 + β1Smallis + β2Aideis + ηs + εis , (1)

where Smallis is a binary variable that equals one if a student attends a small
class, andAideis is a binary variable that equals one if a student attends a regular-
sized class with a teacher and a teacher’s aide. The omitted category is a regular-
sized class with a teacher but no aide. This specification compares the average
test scores of students who, due to the experiment, randomly attended different
class types.

Since the experiment did not specify the exact size for each type, principals were
free to choose from different class sizes within a targeted range for each treat-
ment arm. This relatively free choice of class sizes plus some deviations from the
targeted ranges generates the heterogeneity in dose reductions seen in Figure 1b.

Dose heterogeneity among students who attended the same class type makes

5See Hanushek 1986 for a review of the early observational studies of class size.
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generalizing the reduced form findings difficult. An analogy to randomized con-
trolled trials in medicine serves to illustrate this point. Consider an experiment
that aims to test the effectiveness of a single-use medicine by randomly assign-
ing patients to two groups. Patients in the treatment group can select the dose
they would like to be administered. Patients in the control group are also able to
select the dose as long as it was weakly less than the minimum dose received by
anyone in the treatment group. It would then not be possible to determine the ef-
fectiveness of the treatment from the reduced form of this experiment because it
confounds the effectiveness of the medicine with the differences in dose intensity
chosen by individuals within and between treatment and control groups. The
reduced form of the STAR experiment has the same limitation: it confounds class
size effectiveness with heterogeneity in dose reductions across schools.

A second wave of studies on STAR aimed to produce more generalizable results
by estimating education production functions using randomization into a small
class as an instrument for the class size dose within a 2SLS framework (Krueger
1999). The within-school class-type randomization, Zis ∈ {0, 1}, serves as an
instrument for class size, nis, in the following model:

nis = µs + δsZis + νis

yis = ηs + βisnis + ϵis , (2)

where we omit controls for ease of interpretation. Researchers using 2SLS as-
sume that the within-school randomization is mean independent of unobserved
determinants of test scores, ϵis:

Assumption 1 (No Selection on Unobservables). The STAR randomization be-
tween small and large class types Zis ∈ {0, 1} generates random student compositions
between different class types: E[ϵis|Zis, s] = E[ϵis|s].

It is well known that the causal interpretation of 2SLS estimates with ordered
multi-valued treatment doses is complicated by heterogeneous dose reductions
across units, as discussed in Angrist and Imbens 1995, Rose and Shem-Tov 2021,
and in the context of essential heterogeneity in Heckman, Urzua, and Vytlacil
(2006). In the context of STAR, 2SLS fails to identify the policy-relevant marginal
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effect of class size on test scores even under assumption 1. Proposition 1 shows
that it instead identifies a weighted average of school-specific effects, where the
weights depend on schools’ endogenous dose reductions.

Proposition 1. Suppose Assumption 1 holds, and that school-specific treatment effects
are linear. Moreover, suppose that the original STAR randomization is relevant, i.e., it
generates significant differences in class size within each school. The 2SLS estimator
of model (2) identifies a weighted average effect of marginal effects, where the weights
depend on the endogenous compliance behavior of schools with respect to the class size
reduction in the experimental setting:

β2sls
1 =

∑
s∈S

βs
ϕsZs(1− Zs) (E[∆nis|s, Zi,s = 1]− E[∆nis|s, Zi,s = 0])∑
s∈S ϕsZs(1− Zs) (E[∆nis|s, Zi,s = 1]− E[∆nis|s, Zi,s = 0])

. (3)

In the above equation, βs = E[βis|s], ϕs is the fraction of students attending school
s, Zs is the fraction of individuals in school s who are in small (treated) class-
rooms, and

E[∆nis|s, Zi,s = 1] =
1

ns,treat

∑
c∈s∩treat

ncs(ncs − ns) ,

E[∆nis|s, Zi,s = 0] =
1

ns,control

∑
c∈s∩control

ncs(ncs − ns) ,

ns =

∑
c∈s n

2
cs∑

c∈s ncs

.

The quantities E[∆nis|s, Zi,s = 1] and E[∆nis|s, Zi,s = 0] represent the deviations
between treated and control class sizes from the average class size at school s,
denoted by ns.

The average marginal effect of class size on test scores, E[βis], is a main policy-
relevant parameter of interest, but proposition 1 shows that 2SLS will only iden-
tify E[βis] in two special cases: (i) when impact effects are homogeneous across
schools, namely βs = β for all s ∈ S ; or (ii), when schools have equal lev-
els of compliance regarding dose reductions: E[∆nis|s, Zi,s] = E[∆nis|Zi,s] and
Zs = Z. Both cases impose strong restrictions on either impact heterogeneity
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or on schools’ objective functions. In the first case, an extensive literature has
demonstrated the existence of heterogeneous treatment effects in educational set-
tings (Carneiro, Heckman, and Vytlacil 2011, Walters 2018, Borghesan and Vasey
2024). The second case will be violated if, for example, schools choose a partic-
ular reduction in class size between small and regular class types, thereby self-
selecting into a particular intensity of treatment on the basis of their unobserved
gains from the experiment.

Apart from these special cases, the 2SLS estimand represents a weighted average
of school-specific marginal effects of class size on test scores. The weights in (3)
depend on three factors, each of which may be correlated with the effect of class
size on test scores at that school. They are highest in schools that enroll many
students, where ϕs is large, they are higher in schools with an equal number of
treated and control students, which maximizes Zs(1−Zs), and they are higher in
schools that create a large difference between the sizes of treatment and control
classrooms.6 The last two factors are endogenous in the STAR experiment.

Table 1 provides an example with three schools to demonstrate how endogenous
choices may affect the weights in the 2SLS estimand. School A has 45 students
and creates a treatment class of 15 and a control class of 30. School B has 45
students and creates a treatment class of 20 and a control class of 25. School C
has 60 students and creates two treatment classes of 15 students and one control
class of 30 students. School A has a low population, a low treated fraction of 1/3,
but a large dose reduction between treated and control classrooms. School B has a
higher fraction of treated students than school A but has a lower dose reduction.
Finally, School C is associated with a high value for all components that affect the
2SLS weights. School C is then overweighted in the 2SLS estimand relative to its
size, while school B is significantly underweighted. In this example, two of the
three factors affecting the weights - the fraction of students receiving treatment
and the dose reduction - are under the school’s control in the STAR experiment.

6The weights will be nonnegative at any school where the average treated classroom has
weakly fewer students than the average control classroom. This was the case with all schools in
the STAR experiment.
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Table 1: Example of How IV Weights Are Determined

N Treated Control ϕs Zs(1− Zs) Dose Reduction Weight

A 45 15 30 0.3 0.22 -15 0.35

B 45 20 25 0.3 0.25 -5 0.13

C 60 15, 15 30 0.4 0.25 -15 0.52

The table provides an example of the control and treatment class sizes
created by three hypothetical schools. N refers to the enrollment at the
school, the second and third columns refer to the treated and control class-
room sizes created, and the remaining columns correspond to elements of
the IV weights in (3).

2.3 Lessons from STAR for Class-Size Reduction Policies at Scale

Is the compliance heterogeneity of STAR a flaw or a virtue? We believe that the
STAR experiment serves as a natural laboratory to learn about the challenges of
scaling class-size reduction interventions. The endogenous compliance behav-
ior exhibited by schools within the STAR experiment, though posing a poten-
tial challenge for specific econometric evaluation methodologies, also serves as
a valuable resource. It provides an opportunity to gain insights into the fac-
tors influencing the adoption of policies at scale, as well as potential bottlenecks
(DellaVigna, Linos, and Kim 2023). In STAR, each school represents a distinct
experiment, which allows the researcher to study how impact heterogeneity and
dose reductions vary systematically across schools. This approach aligns with the
recommendation of Al-Ubaydli, List, and Suskind (2020) that researchers lever-
age multi-site trials to investigate the variability in program impacts across di-
verse populations and situational contexts. They argue that “the design of multi-
site trials can provide empirical content into why effects might not scale and give
empirical hints about where more research is necessary before scaling."

One way to learn about impact heterogeneity in the STAR experiment would
be to estimate the relationship between class size and test scores separately by
school. Even if impact heterogeneity and dose reductions were correlated across
schools, the within-school random assignment of students and teachers to classes
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of varying sizes would produce unbiased estimates of school-specific impact ef-
fects. However, limited variation in class size within each school would then
lead to noisy estimates, amplifying the scalability threat posed by low-powered
studies (Al-Ubaydli, List, and Suskind 2020).7 Such a strategy would be subopti-
mal for researchers and policymakers who intend to extrapolate from the STAR
experiment to potential class-size reductions in new contexts. We therefore pro-
pose a new econometric framework that aims to balance the twin attractions of
statistical efficiency and allowing for unobserved heterogeneity in impact effects
and compliance. Our approach will thus shed insight on how these two forces
affect the scalability of the STAR experiment.

3 From STAR Randomization to Policy-Relevant Effects

In this section, we introduce a model aimed at uncovering heterogeneous effects
of class size on test scores in the presence of potentially endogenous compliance.
Our method clusters schools into a fixed number of groups, k = 1, . . . , K, that
share a common set of underlying parameters that collectively govern (1) the
distribution of class sizes within each school and, (2) the marginal effects of class
size on test scores.

3.1 Test Score Model

Test scores are generated by the following equation for student i in school s be-
longing to group k:

yisk = ηs + βisknisk + xisk
′θ + ϵisk ,

βisk ∼ N(µk,Σk) ,

ϵisk ∼ N(0, σ2
ϵ,k), (4)

7The median school in the experiment features two distinct classes: one small and one regular.
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where nisk is individual i’s class size and xisk is a vector of observable student
characteristics.8 In the model, impact effects are heterogeneous and are assumed
to follow a Normal distribution with mean, µk, and variance, Σk, that are allowed
to differ by group. The term µk describes the expected effect of a 1-unit increase in
class size for a randomly selected student attending a school in group k. Student
demographics, xisk, instead have non-random effects on test scores. Test scores
additionally depend on a full set of school fixed effects, ηs, and a student-specific
shock, ϵisk, with mean 0 and a variance σ2

ϵ,k that is allowed to vary by group. The
model therefore incorporates group-specific heteroskedasticity.

The random assignment of teachers and students to classrooms is implicitly im-
posed via two modeling choices. First, the distribution of treatment effects is
school- but not classroom-specific, so that what matters for the marginal effect of
class size on test scores is the match between the student and the school. Second,
assignment to the treatment or control group only affects test scores through its
impact on classroom size, nisk.

3.2 Class Size Model

Each school is associated with a vector of class sizes, n(t)
sk and n

(c)
sk , for the treated

and control groups.9 We posit that these class sizes are generated according to
the following multinomial model:

n
(c)
sk ∼ multinomial(p(c)sk ) for all k in the control group,

n
(t)
sk ∼ multinomial(p(t)sk ) for all k in the treatment group. (5)

Here, p(c)sk ≡ {p
(c)
sk1, . . . , p

(c)
skL}, p

(t)
sk ≡ {p

(c)
sk1, . . . , p

(c)
skM} are school-specific probability

distributions over the size of each class. The support for these distributions is the

8We depart from Krueger (1999) in using raw scores rather than percentile ranks as the out-
come variable. Causal models of the ranks of a dependent variable do not admit a traditional
interpretation of coefficients as marginal effects. In addition, our model assumes that outcomes
are independently distributed conditional on group membership, while the use of ranks would
induce dependence across groups. Finally, a model of test score ranks is inappropriate for many
forms of counterfactual analysis, as a reduction in class size for every student may have beneficial
effects on academic outcomes without causing any discernible effect on ranks.

9n
(t)
sk and n

(c)
sk represent vectors of counts of the number of classes in school s of each size. The

class size experienced by each student in equation (4), nisk, is a scalar integer-valued variable.
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same as the support for the class size vectors, n(t)
sk and n

(c)
sk , and is equal to their

observed support in the data: {12, . . . , 17} and {16, . . . , 27} respectively (so that
L = 6 and M = 12).

The model assumes that class sizes are drawn from school-specific multinomial
distributions, with multiple classes in the same school of a particular type (ei-
ther treatment or control) representing independent draws from the same dis-
tribution. One can intuitively think of p(c)sk and p

(t)
sk as denoting the target pro-

portions of control and treatment classroom sizes for each school. The observed
class sizes are then random deviations from this target. The assumption that p(c)sk

and p
(t)
sk are school-specific rather than classroom-specific is consistent with the

random assignment of students and teachers to classrooms. We do not model
the assignment of treatment and control status to the classroom, since these were
determined randomly in the experiment.

Importantly, we model class size levels and not simply the difference in class
size between treatment and control classrooms. It is quite plausible that schools
with different control class sizes are associated with different impact effects, caus-
ing selection bias. Sorting on gains could result if schools with large classrooms
prior to the experiment simultaneously have large impacts and choose a larger
(or smaller) class-size reduction. By modeling the class size levels for both treat-
ment and control class types, we are able to account for both selection bias and
sorting on gains.

Note that we do not take the number of students in each school as given. It is
endogenous in our model, determined by the sizes of each class in the school.
Endogenizing school size in this manner is useful if school-level factors deter-
mining cohort size are correlated with the impact effects, βisk.

3.3 Endogeneity and Grouped Random Effects

We adopt a Grouped Random Effects approach, following Adusumilli (2020), to
simultaneously estimate (4) and (5) and to group schools that have a common
set of underlying parameters that jointly determine class size and impact effects.
These common parameters, ρk, are constant within each group, and they serve as
priors over each group’s random parameters, (βisk, p

(c)
sk , p

(t)
sk ). By then recovering
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the parameters governing the distribution of (p(c)sk , p
(t)
sk ), we are able to isolate the

intensity of the class size reduction between treatment and control classes within
each school.

We use GRE as it enables us to jointly model both treatment effects and class
sizes. While the Grouped Fixed Effects approach in Bonhomme and Manresa
(2015) allows for nonlinear models, the algorithm they develop could only be
applied to the linear model for test scores and not to the class size model in (5).
Such an approach would only group schools based on heterogeneity in βisk, but
would fail to capture the correlation between βisk and n

(c)
sk and n

(t)
sk that can cause

selection bias and sorting on gains.

Let k ∈ 1, . . . , K denote the set of groups, and ws(k) the group assignment, with
ws(k) = 1 if school s is in group k. For the prior on the treatment effect coeffi-
cients, β ≡ {βisk : s = 1, . . . , S; s(i) = s;ws(k) = 1, k = 1, . . . , K}, we specify

π(β|γ) :=
∏
s

∏
i:s(i)=s

∏
k

N(βisk|µk,Σk)
ws(k), (6)

so that the student-specific marginal effects, βisk, are random draws from a group-
specific normal distribution with mean µk and variance Σk. This assumes that the
distribution of unobserved student and school characteristics affecting the rela-
tionship between class size and test scores is similar across all schools within the
same group.

The school-specific multinomial probabilities for class size, p(c) ≡ {p(c)sk }Ss=1,p
(t) ≡

{p(t)sk }Ss=1, are assumed to have the following group-specific Dirichlet priors:

π(p(c)|η(c)) =
∏
s

∏
k

Dirichlet(p(c)sk |η
(c)
k )ws(k),

π(p(t)|η(t)) =
∏
s

∏
k

Dirichlet(p(t)sk |η
(t)
k )ws(k), (7)

where η(c) ≡ {η(c)k }Kk=1,η
(t) ≡ {η(t)k }Kk=1 are group-specific, and Dirichlet(p|η) de-

notes the pdf of the Dirichlet distribution with parameter η evaluated at p. The
Dirichlet distribution is the conjugate prior for the multinomial distribution. It
is chosen both for computational tractability, and because it is a distribution
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over probability distributions on the unit simplex. It is, therefore, an appropri-
ate choice for generating probability vectors that govern the sizes of control and
treatment classes at each school. Overall, the set of parameters to be estimated
are then ρk := {µk,Σk, η

(c)
k , η

(t)
k }k.

3.4 Probability model

Let y ≡ {yisk}i,s,k and x ≡ {xisk}i,s,k denote the vectors of test scores and covari-
ates, and group the variance of the test score disturbances as σ2

ϵ ≡ {σ2
ϵ,k}k. Given

the treatment effect heterogeneity β, and the class size vectors n(c) := {n(c)
isk}i,s,k,

and n(t) := {n(t)
isk}i,s,k, equation (4) implies that we can model test scores using

the log-likelihood

ln p(y|β,n(c),n(t),x,σ2
ϵ , θ) :=

∑
s

∑
i:s(i)=s

ln p(yisk|βisk, nisk, xisk, σ
2
ϵ,k, θ, s) ,

:=
∑
s

∑
i:s(i)=s

−1

2
lnσ2

ϵ,k(s) −
(yisk − βisknisk − x′iskθ − ηs)2

2σ2
ϵ,k(s)

.

Similarly, the multinomial class size model in (5) implies that the distribution of
the sizes of treatment and control classrooms is given by

ln p(n(c)|p(c)) :=
S∑

s=1

N(c)(s)∑
g=1

K∑
k=1

ws(k)

{
L−1∑
l=0

I{n(c)
skg ≡ 12 + l}p(c)skl

}
, (8)

ln p(n(t)|p(t)) :=
S∑

s=1

N(t)(s)∑
g=1

K∑
k=1

ws(k)

{
M−1∑
m=0

I{n(t)
skg ≡ 16 +m}p(t)skm

}
, (9)

where N (c)(s) and N (t)(s) are the observed number of control and treatment
classes, respectively, in school s. The expressions in (8) and (9) show that the
log-likelihood of obtaining the vector of control and treated class sizes, n(c) and
n(t), is equal to the sum, over all groups, of an indicator for group membership
times the school-group-specific multinomial probabilities for the observed class
sizes.

Conditional on the unobserved heterogeneity, (β,p(c),p(t)), the joint likelihood of
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the observations (y,n(c),n(t)) is given by

p(y,n(c),n(t)|β,p(c),p(t),x,σ2
ϵ , θ) := p(y|β,n(c),n(t),x,σ2

ϵ , θ)·p(n(c)|p(c))·p(n(t)|p(t)).

Additionally, in view of (6) and (7), the prior distribution of unobserved hetero-
geneity is

π
(
β,p(c),p(t)|γ,η(c),η(t)

)
:= π(β|γ) · π(p(c)|η(c)) · π(p(t)|η(t)),

where γ = {µk,Σk}k denotes the collection of group-specific parameters deter-
mining the effects of class size on student test scores.

4 Estimation

Let α := (β,p(c),p(t)), βs := {βisk : s(i) = s}, αs := (βs, p
(c)
s , p

(t)
s ), ρ := (γ,η(c),η(t))

and ρk := (γk,η
(c)
k ,η

(t)
k ). Also, let (ys,n

(c)
s ,n

(t)
s ) denote the set of test scores and

class sizes pertaining to school s. The GRE problem is to maximize the likeli-
hood of the data jointly over both the group assignments and the common and
group-specific parameters:

max
{ws(k)},θ,{ρk}

ln

∫
p(y,n(c),n(t)|α,x,σ2

ϵ , θ)π (α|ρ) dα

= max
{ws(k)},θ,{ρk}

S∑
s=1

K∑
k=1

ws(k) ln

∫
p(ys,n

(c)
s ,n(t)

s |αs,x, σ
2
ϵ,k, θ)π (αs|ρk) dαs. (10)

Following Adusumilli (2020), we solve the above maximization problem using
the Expectation, Assignment, Maximization, and Propagation (EAMP) algorithm.
To use the algorithm, we first use the Donsker-Varadhan variational formula to
rewrite the likelihood in (10) as follows:

max
{ws(k)},θ,{ρk}

S∑
s=1

K∑
k=1

ws(k) ln

∫
p(ys,n

(c)
s ,n(t)

s |αs,x, σ
2
ϵ,kθ)π (αs|ρk) dαs
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= max
{qsk(·)},

{ws(k)},θ,{ρk}

S∑
s=1

K∑
k=1

ws(k)
{
Eqsk(·)

[
ln p(ys,n

(c)
s ,n(t)

s |αs,x,σ
2
ϵ,k, θ)

]
− KL (qsk(αs) || π(αs|ρk))

}
.

(11)

In the above equation, qsk(·) denotes a group-specific distribution over αs and the
maximization is carried out over the space of all possible distributions qsk(·). The
EAMP Algorithm proceeds by repeatedly maximizing over each of {qsk(·)}, {ws(k)}, θ,
and {ρk} holding other quantities fixed. This results in a sequence of four steps –
Expectation, Assignment, Maximization, and Propagation – that are repeated in
an iterative process until the algorithm converges. Note that we first demean all
variables by their school-specific means to eliminate the school fixed effects be-
fore running the estimation algorithm. A detailed description of the algorithm’s
steps is provided in Appendix A.

5 Empirical Findings

In this section we present the estimates of the model with controls for child gen-
der, race (an indicator for being neither white nor Asian), and free lunch status.
The EAMP algorithm takes the number of groups as given. In choosing the group
size, we aim to balance the competing attractions of parsimony and allowing for
richer patterns of heterogeneity. The EAMP framework allows for the number of
groups to be as many as the number of schools. However, allowing for too many
groups may cause the model to capture more noise than signal and render the
estimates difficult to interpret. In practice, we use the Bayesian Information Cri-
terion (BIC) to select the number of groups. BIC selects three groups as optimal.10

Altogether, our analysis consists of kindergarten students in the seventy-nine
participating schools in the Tennessee STAR experiment who were randomly as-
signed to either a small or a regular class, who do not lack information on race,
gender, or eligibility for free/reduced price lunch, and who have at least one
exam score at the end of kindergarten. These restrictions result in an estimation
sample of 3813 students.

10Appendix D presents estimation results with four groups. These estimates are similar to the
estimates from the three-group model.
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Table 2: Class Size Marginal Effects by Group

Group µk Σk σ2
ϵ,k Schools Students

1 -0.068 0.042 4.933 31 1425

(0.061) (0.065) (1.55)

2 -0.339 0.235 6.442 23 1137

(0.062) (0.15) (1.86)

3 0.106 0.001 11.852 25 1251

(0.059) (0.07) (2.07)

Avg. Effect -0.092 0.118 7.653

(0.033) (0.048) (0.68)

N 3813

The table shows the estimated model parameters governing the
effect of class size on test scores. Regressions include controls for
gender, race, and free lunch status. Controls are constrained to
be equal across groups. The class size effects represent the ef-
fect of a one-unit increase in class size on a simple mean of three
test scores. Bootstrapped standard errors from 95 boostrapped
data sets are in parentheses. Boostrapping involves first sam-
pling schools from the set of 79 schools that participated in the
experiment and then sampling individuals within each school.

Summary statistics for the estimation sample are presented in Appendix Table B-
1. The exams, which were originally measured on a scale of 0 to 1000, have been
converted to a 0-100 scale. The table shows that the mean exam score is 45.30

points, and the standard deviation is 3.59 points. The minimum and maximum
test scores in the sample are 28.80 and 61.53, respectively. The average student
sits in a classroom with nearly 19 students including herself. 49% of students are
female, 47% of students are eligible for free lunch, and 32% are neither white nor
Asian, meaning that they are either Black, Hispanic, or Native American. Slightly
fewer than half of students, 46.5%, are in small (treated) classrooms.

Table 2 presents the estimated parameters of the model for test scores with three
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groups. It presents the mean (µk) and variance (Σk) of the marginal effects of
class size on test scores for each group, alongside the variance of the unobserved
shocks in test scores by group, σ2

ϵ,k. Our results reveal striking differences in
the marginal effects of class size on test scores across groups. Group two, com-
prising twenty-three schools, exhibits substantial gains from reducing class size,
evidenced by a prominently negative marginal effect of class size on test scores.
In contrast, group three, encompassing twenty-five schools, demonstrates an in-
significant, but positive effect, implying that, on average, reducing class size is
detrimental to students in these schools. Class size has a moderate negative effect
at schools in group one.

The test score performance of students in group two responds strongly to changes
in class size. The mean test score increase for students in group two schools
caused by reducing class size by one unit is 0.339 points, representing an im-
provement of 0.094 standard deviations. When averaged across all groups and
students, the marginal effect of a one-student reduction in class size translates to
an improvement of 0.092 points, equivalent to 0.026 standard deviations.

These heterogeneous effects of class-size reductions are accompanied by hetero-
geneous compliance across schools when determining class sizes. Table 3 dis-
plays the estimated Dirichlet prior means for the class size model by group. The
Dirichlet prior mean can be interpreted in our context as a prior on the fraction of
classes with each size. A higher value, all else equal, indicates that schools within
that group are more likely to create a classroom of that size. The table shows that
schools in Group 1 choose relatively large control class sizes, while Group 2 has
relatively small control classes, and Group 3 has smaller treated class sizes. Vari-
ation in targeted treatment and control class sizes means that compliance with
the STAR protocol differed across schools, with schools in Group 1 creating the
largest expected difference between treated and control classrooms.

The EAMP algorithm thus uncovers distinct patterns of learning gains and class
size reductions in the data. Figure 2 plots the treatment-control difference in
test scores against the treatment-control difference in class sizes across schools.
The areas inhabited by Groups 2 and 3 scarcely overlap. Group 2 consists of
schools where students attending small classes saw large benefits, while students
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Table 3: Dirichlet Class Size Parameters by Group

Treatment Class Size

Group 12 13 14 15 16 17

1 0.06 0.15 0.09 0.22 0.25 0.22

2 0.03 0.14 0.29 0.13 0.21 0.20

3 0.08 0.17 0.16 0.17 0.26 0.15

Control Class Sizes

Group 16 17 18 19 20 21 22 23 24 25 26 27

1 0 0.03 0.03 0.11 0 0 0.14 0.17 0.32 0.11 0.09 0

2 0 0 0 0.03 0.12 0.33 0.32 0.07 0.1 0.03 0 0

3 0.03 0.09 0 0.06 0.06 0.12 0.15 0.25 0.15 0.03 0.03 0.03

The top panel of the table displays the Dirichlet prior means for each treatment class size
by group. The bottom panel reports the Dirichlet prior means for each control class size by
group. Each reported number can be interpreted as a prior on the fraction of observations
in each cell. Zeros indicate that a particular group does not generate classes of that size.

in Group 3 schools benefited little from smaller classes. Group 1, which has a
moderate relationship between class size and test scores, is relevant for policies
that reduce class size marginally from the status quo, because it is the only group
with any support on small reductions in class size.

In Appendix Table B-2, we show how students in different groups differ by ob-
servable characteristics. We repeat the same analysis for teacher-specific vari-
ables in Table B-3 and for school-specific variables in Table B-4. Observable dif-
ferences across groups are small, although a few are of particular interest. Group
2, which has the greatest marginal effect of class size, has the highest fraction
of nonwhite students. Students in Group 2 also attend school for between four
and five fewer days of the school year relative to students in the other groups, a
result due to both absences and the length of the school year. Group 3, which is
the only group with a positive relationship between class size and student per-
formance, has by contrast the highest fraction of white and Asian students. Table
B-3 shows that schools in Groups 2 and 3, which have opposite responses to class
size reductions, display similar populations of teachers. These teachers are less
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Figure 2: Test Scores and Class Size Reductions

The figure plots the average difference in test scores between treated and control classrooms
along the Y-axis against the average difference in class size between treated and control
classrooms along the X-axis. Each dot represents a school. The groups are determined by
the EAMP algorithm described in section 3.

likely to have a masters degree but have more years of experience than Group 1
teachers.

Table B-4 shows little evidence of of geographic differences in the distribution
of schools across the three groups. Group 2 schools tend to have the largest co-
horts, while schools in Group 1, which complied the most with the policy by
creating large class size dose reductions, had small cohorts, the smallest average
cohort size, and the least race-segregated schools.11 These findings suggest that
the schools in Tennessee that deliver the greatest marginal returns to class size
have more nonwhite students and larger cohorts. The results also suggest that
compliance was lowest at the most segregated schools.

11A school is deemed to be race-segregated if over 80% of its student body belongs to a single
race. According to this metric, 88% of schools in the STAR experiment were segregated.
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5.1 Individual Heterogeneity in the Impact of Class Size

These findings lend support to the subgroup analysis in Krueger (1999) that
found that Black students and students qualifying for a free or reduced price
lunch benefited more from smaller class sizes than did their white and wealthier
peers. In Table 5, we show that differential effects by race and income are driven
both by the type of school attended and by individual heterogeneity across race.
Columns (1) and (2) of Table 5 display separate 2SLS regressions of test scores
on class size for nonwhite and white and Asian students. Columns (3) and (4)
instead run OLS regressions after interacting class size with group membership
as recovered by the EAMP algorithm.12 The comparison reveals that differences
in the returns to class size by race identified by the 2SLS regressions are entirely
driven by differences in group one. White and Asian students in Group 1 schools
do not benefit from reduced class sizes, while nonwhite students experience sig-
nificant gains. There is no racial difference in the return to class size at schools in
Groups 2 and 3, suggesting that individual heterogeneity in the response to class
size interventions is driven at least in part by the type of school attended. This
is relevant for policymakers, because if a goal of a particular policy is to reduce
the Black-white test score gap, then the policy must include a sizeable number of
Group 1 schools.

Columns (5)-(8) of Table 5 repeat the same exercise for students qualifying for
free lunch and those who do not. While columns (5) and (6) seem to suggest that
the relationship between test score and class size does not differ by free lunch
status, columns (7) and (8) reveal that this is actually due to offsetting effects in
different groups. Students in Group 1 schools who qualify for free lunch benefit
significantly from a reduction in class size, while students from richer households
do not benefit. But, in the remaining schools, richer students react more to class
size reductions than poorer students.
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Table 5: Heterogeneity in Marginal Effects of Class Size on Test Scores by Race and Income

(1) (2) (3) (4) (5) (6) (7) (8)

By Race By Income

Nonwhite White & Nonwhite White & Free lunch No free lunch Free lunch No free lunch
Asian Asian

Class size −0.134 −0.085 −0.110 −0.093

(0.025) (0.018) (0.020) (0.021)

Class size × Group 1 −0.169 −0.023 −0.116 −0.032

(0.035) (0.026) (0.028) (0.029)

Class size × Group 2 −0.349 −0.346 −0.311 −0.357

(0.050) (0.032) (0.038) (0.036)

Class size × Group 3 0.114 0.115 0.098 0.123

(0.038) (0.033) (0.031) (0.038)

Constant −0.282 0.132 −0.271 0.116 −0.705 0.632 −0.564 0.477

(0.086) (0.063) (0.142) (0.099) (0.069) (0.072) (0.112) (0.113)

Observations 1,216 2,597 1,216 2,597 1,803 2,010 1,803 2,010

R2 0.014 0.008 0.063 0.048 0.011 0.009 0.051 0.053

Columns (1)-(2) and (5)-(6) show 2SLS regression results for four subsamples of interest: nonwhite, white & Asian, students
who do not qualify for free or reduced price lunch, and those who do qualify. The excluded instrument is a binary indicator
for attending a small classroom. Columns (3)-(4) and (7)-(8) show the results from OLS regressions of test scores on class size
interacted with group membership, as uncovered by the EAMP algorithm, for the same subsamples. The dependent variable is
a simple mean of scores on three cognitive tests. All models include school fixed effects.

5.2 Assessing Linearity

An important assumption of our model is that class size has a linear effect on test
scores in each group. We now examine this assumption more closely.13 To do
this, we estimate the following semiparametric regressions of test scores on class
size separately by each group k:

yisk = ϕk(nisk) + x′iskθk + εisk . (12)

We estimate the model in equation (12) according to the Robinson (1988) semi-
parametric estimator, which first entails partialing out the group-specific means
from both test scores and class sizes for the six cells created byFemale×Nonwhite×
Freelunch before nonparametrically regressing demeaned test scores on demeaned
class size using local linear regression. We use an Epanechnikov kernel and a

12Under the assumption of no endogenous compliance within groups, this OLS specification
delivers unbiased estimates of group-specific returns to class size.

13Bandiera, Larcinese, and Rasul (2010) find evidence of nonlinear effects of class size on aca-
demic performance among university students.
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Figure 3: Nonparametric Regressions of Test Score on Class Size

The figure plots the semiparametric relationship between class size and test scores by
group, as uncovered by the EAMP algorithm. All regressions use an Epanechnikov ker-
nel and a bandwidth of 7.5. The regressions control for gender, race, and free lunch status.
The black curve labeled All is a kernel-weighted average of the group-specific curves.

bandwidth of 7.5 students, which lets in about 50% of the data.

Figure 3 displays the results of the nonparametric regressions of test scores on
class size over the support of class sizes within each group. The shaded regions
represent asymptotic 95% confidence intervals. The sharp downward relation-
ship between class size and test scores in Group 2 is noteworthy. The difference in
size (of 12 students) between the largest and smallest classes in Group 2 produces
a difference of approximately 1.25 sd on the exam. This relationship dwarfs the
effects seen in other groups. Although the slopes vary noticeably across groups,
there is limited indication of nonlinearities within any of the groups. We therefore
use estimates from the linear model in Table 2 to conduct subsequent analysis.
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6 Lessons for Scaling Class-Size Reduction Policies

We now discuss the extent to which it is possible to learn about the scalability
of class-size reduction initiatives from the STAR experimental data. Prior litera-
ture has emphasized how supply-side factors, particularly a limited pool of high
quality educators, pose a major challenge in scaling the STAR experiment. For ex-
ample, a state-wide reduction in class sizes in California in 1996 caused schools
to hire less-qualified teachers, which contributed to the disappointing “voltage
effects," whereby the policy’s effects were much smaller compared to those ob-
served in the experimental setting (List 2022).

Our paper provides a new framework for understanding the link between exper-
imental interventions and widespread policy adoption. We argue that the first
step in scaling an intervention is aligning the econometric model with the ex-
perimental design. Even after this is done, additional challenges remain, but we
show how the GRE framework can provide tools to assess the likelihood that the
intervention will scale in new contexts. We conclude by discussing when target-
ing resources may emerge as a useful scaling alternative to universal policies.

6.1 Assessing the Internal Validity of the STAR Evaluation

Following the discussion in section 2.2, we argue that the 2SLS estimator is not
well-aligned with the STAR experimental design.14 Table B-6 compares the re-
sults from our estimated model with 2SLS that uses a treatment indicator as
an instrument for class size in an IV model. The coefficient obtained by 2SLS
(−0.101) does not differ much from the average marginal effect uncovered by the
EAMP algorithm (−0.092), but this is more by chance than by design. Recall that
in section 2.2 we showed how the 2SLS estimand is given by

β2sls
1 =

∑
s∈S

βs
ϕsZs(1− Zs) (E[∆nis|s, Zi,s = 1]− E[∆nis|s, Zi,s = 0])∑
s∈S ϕszs(1− zs) (E[∆nis|s, Zi,s = 1]− E[∆nis|s, Zi,s = 0])︸ ︷︷ ︸

weights

,

14The same is true for the reduced-form estimator, as dose heterogeneity renders the estimates
difficult to interpret.
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Table 6: IV Weights

Group Marginal Effect ϕg Zg(1− Zg) Dose Reduction 2SLS Weight

1 -0.068 0.374 0.249 -7.404 0.406

2 -0.339 0.298 0.247 -6.528 0.283

3 0.106 0.328 0.249 -6.465 0.311

The table displays instrumental variables weights computed according to equa-
tion (3). The three rightmost columns – corresponding to the fraction of individ-
uals in each group who are treated, the fraction of the sample in each group, and
the differential between treated and control class sizes in each group – are all indi-
vidual components of the 2SLS weight formula.

where the school-specific weights on βs depend on each schools’ endogenous
dose reduction. Table 6 aggregates these weights by group and breaks them
down further into their individual components.15 Schools in Group 1 have the
highest weight, because they created the largest dose reductions and had the
highest fraction of treated observations. Lower dose reductions and treated pro-
portions cause schools in Groups 2 and 3 to be underweighted relative to their
size. 2SLS does not differ significantly from the EAMP estimate, because endoge-
nous compliance in STAR took a particular form that caused 2SLS to overweight
the schools with the most typical impact effects (Group 1) and underweight the
schools in the tails of the distribution (Groups 2 and 3).

Krueger (1999) documents how dissatisfaction among parents whose children
had been randomly assigned to larger classrooms led to attrition from control
classes and re-randomization in later years of the experiment. An attempt to
forestall parental concerns like these may have led some principals to target sim-
ilar sizes for treatment and control classrooms at the program’s inception, po-
tentially leading schools with higher impact effects to implement smaller dose
reductions.16 An important takeaway from this episode is that interventions are
often more likely to scale successfully when they receive approval and support

15Appendix Figure B-1 plots the distribution of weights across schools within each group.
16School infrastructure may also have affected class size targets. The state of Tennessee cov-

ered the costs of hiring teachers and aides, but schools were required to provide additional class-
room space if needed (Word et al. 1990).

28



from the local community (Agostinelli, Avitabile, and Bobba 2023). Such ap-
proval tends to be easier to obtain when the distribution of resources is perceived
as equitable (Rawls 1971).

This may explain why all three groups of schools undercomplied with the STAR
experimental protocols. To show this, we simulate the Tennessee STAR experi-
ment as it was originally intended with small classes ranging from 13 to 17 stu-
dents and regular classes between 22 and 25 students. We impose equal compli-
ance by setting the Dirichlet distributions that govern class size to place equal
weight on all sizes, so that (η(t)k , η

(c)
k ) = (1,1) for all groups k = 1, . . . , K. We then

simulate class sizes and test scores and compute moments. These moments, in
the third column of Table 7, show that the intended Tennessee STAR experiment
would have generated a larger dose reduction, of over one student per classroom,
between treated and control classrooms than was actually implemented. Endoge-
nous compliance in STAR thus manifested itself in two ways: under-compliance
overall and particularly large under-compliance at schools in Groups 2 and 3 that
are associated with larger impact effects. If STAR had been implemented as in-
tended, the reduced form effect would have been 18% higher (0.762 instead of
0.645).

Alternative forms of noncompliance could have generated still larger ATEs. We
simulate an implementation of STAR that maximizes the difference between treat-
ment and control class sizes in Groups 1 and 2 and minimizes this difference for
schools in Group 3. This version of STAR would have generated an average
difference in test scores between treated and control classrooms of over ten stu-
dents, and a huge reduced form effect of 1.971 points (or 0.55 s.d.). The 2SLS
estimate obtained from this experiment would be −0.199, more than twice the
average marginal effect of −0.092 estimated by our model. This occurs because
2SLS places negative weights on schools in Group 3, but these are schools which
have a positive effect of class size on test scores. Researchers relying on 2SLS
would therefore have erroneously concluded that reducing class size was more
than twice as effective as it actually is.

These simulations show how the twin features of compliance and impact hetero-
geneity mean that different implementations of the STAR experiment on the same

29



Table 7: Model Fit and Counterfactual Simulations

Model’s Counterfactual Simulation

Data Model Intended Experiment Extreme Noncompliance

Reduced Form 0.727 0.645 0.762 1.971

2SLS -0.101 -0.089 -0.090 -0.199

Avg. class size 18.991 19.02 19.764 20.026

S.D. class size 4.067 4.081 4.371 6.420

Dose Reduction -7.228 -7.282 -8.417 -10.384

The table presents several moments from the actual data and simulations. The first
row is the reduced form effect of randomization into a small class on test scores, es-
timated using linear regression model with school fixed effects. The 2SLS model em-
ploys randomization into a small class as an instrument for class size in a two-stage
least squares regression, incorporating school fixed effects. All regressions control for
race, free lunch status, and gender. Simulated and counterfactual estimates are aver-
ages across 100 simulations. Details regarding the simulations are provided in section
6.

underlying population will generate different 2SLS estimates. While all estimates
in Table 7 indicate a negative relationship between class size and test scores, the
marginal effects estimated by 2SLS can differ considerably. These variable esti-
mates can generate different rationales for action by policymakers, particularly
when policies are justified on the basis of the marginal value of public funds
(Mayshar 1990; Kline and Walters 2016). The 2SLS estimator is therefore poorly-
aligned with an experimental design that allows for dose heterogeneity and en-
dogenous dose responses. Furthermore, 2SLS tells researchers nothing about the
heterogeneity in impact effects and compliance behavior, both of which affect
scalability of the experimental intervention.

6.2 Assessing the Policy-Relevance of the STAR Evaluation for Scaling

GRE, by contrast, is robust to different implementations of the experiment and
informs us about the distributions of compliance and impact heterogeneity. In
the GRE framework, the policy-relevant treatment effect (PRTE) for moving from
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policy a to policy a′ can be decomposed as follows:

PRTEa′,a =
K∑
k=1

ρkµk (E[nisk|k, Policy = a′]− E[nisk|k, Policy = a])︸ ︷︷ ︸
Compliancek

, (13)

Equation (13) shows that the expected effect of a policy intended to reduce class
size hinges on schools’ compliance with the policy, the structural impact effects
µk, and the proportion of schools belonging to each group in the population,
given by ρk. Al-Ubaydli et al. (2021) identify nonrepresentative populations and
nonrepresentative behavioral responses as two main threats to the scalability of
experimental interventions. In our framework, ρk corresponds to representa-
tiveness of the population and Compliancek corresponds to representativeness
of the behavioral response. When scaling an intervention, it is important to as-
sess whether ρk and Compliancek will differ in the new context.

The history of the Tennessee STAR experiment sheds light on the potential obsta-
cles to implementing a statewide reduction in class size. Rockoff (2009) explains
that “only about one in five eligible schools volunteered to participate."17 This
reluctance to engage in the experiment may have stemmed from various factors,
including disinterest or practical limitations in reducing class size. These schools,
which opted out of the experiment, will likely be involved in any statewide ex-
pansion of the class-size reduction policy, which may diminish the PRTE.

When extrapolating from the STAR experiment to new contexts, it is important to
assess the representativeness of the experimental sample for the new population.
This corresponds to determining whether the group proportions, ρk, are the same
in the experimental and scaled environments. The GRE model groups schools
based on their compliance and impact effect heterogeneity, and we suggest that
researchers use this discrete grouping to estimate multinomial models of group
membership as functions of site-specific covariates. Researchers can then use
such a model to predict the proportion of groups in new environments.

The estimated coefficients for two multinomial logit models of group member-
ship are presented in Table 8. None of the coefficients are statistically significant,

17See also Boyd-Zaharias et al. 2007 for details on the STAR experimental design.
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partly due to the sample size of 79 schools. This may also reflect the fact that treat-
ment effect heterogeneity in STAR stems less from observable school-specific fac-
tors than from unobservables. Observable characteristics may, however, be more
predictive of impact effect heterogeneity in other multi-site experiments. In these
settings, researchers can use GRE to classify sites based on impact and compli-
ance heterogeneity, estimate group membership as a function of site-specific co-
variates, and use these multinomial models to predict group membership in new
sites where they hope to scale the intervention. When researchers can accurately
predict impact heterogeneity based on site-specific covariates, resource targeting
becomes a promising alternative to universal policy adoption.

6.3 Targeting Small-Class Policies

Targeted policies are less costly than universal ones and can be better monitored,
which makes them less susceptible to a “voltage drop" in implementation. If
patterns in treatment effect heterogeneity are known, a targeted policy may be
particularly efficient. To demonstrate this, we simulate a universal class-size re-
duction of five students across all schools and examine its effect on test scores and
on the test-score gaps between Black and white students and between students
who qualify for free lunch and those who do not. We then ask: What fraction of
these effects could be achieved by a targeted policy that reduces class size by five
students in the single group of schools with the largest marginal returns to class
size?

Table 9 presents estimates of these counterfactual treatment effects. The first row
shows that reducing class size by five for all students in the experiment would
have raised test scores by 0.458 points overall, but the same intervention applied
to only the 29% of schools in Group 2 would have generated gains that are 10.3%
larger. The second row shows that the universal reduction of five students would
have lowered the Black-white test score gap by 0.137 points, but an intervention
targeted only to Group 2 schools would have reduced the gap by 0.105 points, or
76.7% of the original effect. The effects of both the universal and targeted inter-
ventions on the gap between students growing up in richer and poorer house-
holds (as measured by free lunch status) are small. These simulations suggest
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Table 8: Predictive Models

Model 1 Model 2

Group 2 Group 3 Group 2 Group 3

Suburban 0.262 −0.143 −0.701 −0.470

(0.714) (0.691) (1.034) (0.972)

Urban −0.431 −1.529 −0.738 −1.788

(0.963) (1.180) (1.007) (1.216)

Inner City −0.208 −1.124 −2.456 −2.999

(0.708) (0.776) (1.833) (1.873)

Cohort Size 0.157 0.257

(1.109) (1.149)

Teacher Experience 0.177 0.127

(0.119) (0.112)

Teacher: Master’s Degree −1.427 −1.399

(1.240) (1.151)

Days in School −2.181 −0.051

(2.933) (3.063)

% Black 2.819 1.677

(2.300) (2.284)

% Free lunch −1.038 0.653

(2.313) (2.112)

AIC 184.170 199.428

Observations 79 79

The table shows the estimated coefficients from two multinomial logit
models predicting group membership as a function of school-specific
covariates. Group one is the reference group. School-specific averages
of individual- and teacher-specific variables are used. Standard errors
are in parentheses.
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Table 9: Comparing Universal and Targeted Interventions

Universal Intervention Targeted Intervention

Data Effect on Scores Percent Reduction Targeted Effect on Scores Fraction of Universal Effect

Overall 0.458 0.506 1.103

Black-white gap -1.395 0.137 9.8 % 0.105 0.767

Free lunch gap -1.982 0.013 0.7 % 0.023 1.748

The table shows the effect of reducing class size by 5 students for everyone (universal intervention) with the effect of
reducing class size by 5 students for schools in group two only (targeted intervention) on three separate outcomes. The
first row simulates the effect on average test scores, while the second and third rows simulate the effects on the gaps in
test scores between Black and white students and between students who qualify for free lunch and those who do not.
Estimates are averages across 100 simulations. Details regarding the implementation of these counterfactual interventions
are presented in section 6.

that there may be large cost efficiencies in policy implementation if resources can
be targeted where they are likely to have the largest effects.

7 Conclusion

This paper develops and implements a novel empirical framework that can be
applied to large families of randomized controlled trials with potentially en-
dogenous compliance and heterogeneous treatment effects. We make use of the
Grouped Random Effects approach of Adusumilli (2020), a generalization of the
Grouped Fixed Effects framework of Bonhomme and Manresa (2015), to identify
patterns in treatment effect heterogeneity and compliance behavior across multi-
site experiments. We then show how this framework can help researchers use the
experimental data to learn about the scalability of the policy.

We apply this framework to data from the Tennessee STAR experiment to eval-
uate the causal effects of class size on student learning. The grouping algorithm
uncovers marked differences in the effectiveness of class size reductions across
schools. We find that 29% of schools in the experiment generated an increase
in test scores of 0.09 sd on average for each one-student reduction in class size.
However, the effect of class size on test scores was small in the remaining schools.

Our findings contribute to the debate on the value of universal versus targeted
interventions. We show how a well-targeted investment to reduce class size can
generate similar overall effects on test scores as a universal program. The same
program would also reduce the black-white test score gap by 76.7% as much as
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a universal program. Targeted interventions may also have other benefits not
studied in this paper, the most important being that that they can be scaled more
easily while retaining quality.

By presenting evidence of greater heterogeneity in both impact effects and com-
pliance behavior than previously acknowledged, we posit that the STAR exper-
iment can reconcile contrasting conclusions from previous studies of class size
effects on children’s learning. We show how different implementations of STAR
could have generated a wide range of estimates regarding class size effectiveness
when using common regression estimators like two-stage least squares (2SLS).
Our findings underscore the significance of designing pilot interventions capa-
ble of revealing the extent of treatment effect heterogeneity before advocating for
the scaling of interventions across different contexts, situations, and populations.

More research is still needed to understand why educational interventions cause
such heterogeneous effects across schools. This paper provides a first step at
documenting the wide variability in the production function relating schooling
investments to knowledge. Our hope is that future researchers use these tools
to generate further insights on who responds endogenously to investments, who
benefits from them, and why.
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Appendices

A Details of the EAMP algorithm

This appendix describes the steps of the EAMP algorithm used to estimate the
GRE model.

Step E: Expectation

By the Donsker-Varadhan variational formula, the optimal value of qsk(αs) is just
the posterior distribution of αs, as implied by the likelihood p(ys,n

(c)
s ,n

(t)
s |αs,x,σ

2
ϵ , θ)

and the prior π(αs|ρk). Since the prior is conjugate to the likelihood, the poste-
rior can be computed very quickly. To characterize the posterior, we first note
that due to the structure of the model, the posterior is separable:

qsk(αs) = qsk(βs) · qsk(p(c)
s ) · qsk(p(t)

s ).

We can then update each of these quantities separately as follows. The update to
the posterior distribution of βs is given by

qsk(βs) ≡
∏

i:s(i)=s

qsk(βisk)←
∏

i:s(i)=s

N(βisk|µisk,Σisk)

where, for each i such that s(i) = s, we update

Σisk ←

(
Σ−1

k +
niskn

⊺
isk

σ2
ϵ,k

)−1

,

µisk ← Σisk

(
Σ−1

k µk +
nisk(yisk − x′iskθ)

σ2
ϵ,k

)
(A-1)

The update to qsk(p
(c)
s ) is given by

qsk(p
(c)
sk )← Dirichlet(p(c)sk |η

(c)
k ),
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where η(c)k ≡ {η
(c)
k1 , . . . , η

(c)
kL} denotes the posterior values of η(c)k , and is given by

η
(c)
kl = ηkl +

N(c)(s)∑
g=1

I{n(c)
skg ≡ 16 +m}, for each m = 0, . . . ,M.

The update to qsk(p
(t)
sk ) is analogous.

Step A: Assignment

We assign each observation to one of the K groups by maximizing (11) with re-
spect to ws(k). As in Adusumilli (2020), group assignments are obtained as the
solution to the following problem:

k(s)← argmax
k

Isk; Isk := ln
p(ys,n

(c)
s ,n

(t)
s |αs,x,σ

2
ϵ , θ)π (αs|ρk)

qsk(αs)
. (A-2)

Since the posterior distribution, qsk(αs), is known from Step E, we can obtain an
analytical expression for Isk. To obtain this expression, note that

ln Isk =
p(ys|βs,x, σ

2
ϵ,k(s), θ) · p(n

(c)
s |p(c)

s ) · p(n(t)
s |p(t)

s )π(βs|ρk) · π(p(c)
s |η(c)

k ) · π(p(t)
s |η(t)

k )

qsk(βs) · qsk(p(c)
s ) · qsk(p(t)

s )
,

(A-3)

which can be grouped into three separate terms:

ln
p(ys|βs,x,σ

2
ϵ,k(s), θ)π(βs|ρk)

qsk(βs)
= −1

2

∑
i:s(i)=s

{
(yisk − x′iskθ)2

σ2
ϵ,k

+ µ⊤
k Σ

−1
k µk − µ⊤

ksiΣ
−1
ksiµksi

}

+
1

2

∑
i:s(i)=s

{ln |Σksi| − ln |Σk|} −
1

2
lnσ2

ϵ,k + const

(A-4)

ln
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s |p(c)

s )π(p
(c)
s |η(c)

k )

qsk(p
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= ln
N
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s !∏J
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k + n
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= lnB(η
(t)
k + n

(t)
sk )− lnB(η

(t)
k ) + const (A-6)

where n(c)
sk , and n(t)

sk are the count vectors containing the number of classes of each
type in school s,N (c)

s andN (t)
s are the number of control and treatment classrooms

in school s, B(η) =
∏J

j=1 Γ(ηj)

Γ(
∑J

j=1 ηj)
, and Γ(n) = (n − 1)!. We compute Isk as the sum of

(A-4) (A-5) and (A-6) separately for each school and group, and then we assign
each school to the group with the greatest value of Isk.

Step M: Maximization

The maximization step updates the estimates of the nonrandom parameters, θ
and σ2

ϵ . We compute θ by solving

max
θ

S∑
s=1

K∑
k=1

ws(k)Eqsk(·)
[
ln p(ys,n

(c)
s ,n(t)

s |αs,x, σ
2
ϵ,k, θ)

]
=

max
θ

S∑
s=1

K∑
k=1

ws(k)Eqsk(·)
[
ln p(ys|αs,x, σ

2
ϵ,k, θ) + ln p(n(t)

s |αs) + ln p(n(c)
s |αs)
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max
θ

S∑
s=1

K∑
k=1

ws(k)Eqsk(·)
[
ln p(ys|,αs,x, σ

2
ϵ,k, θ)

]
(A-7)

Since yisk is normally distributed conditional on covariates, class size, and the
random coefficients, the solution to (A-7) is a linear projection:

θ =

(
N∑
i=1

xiskx
′
isk

)−1( N∑
i=1

(yisk −
K∑
k=1

ws(i)(k)niskEqsk(·)[βisk])

)
, (A-8)

where ws(i)(k) is an indicator for whether student i’s school (s) belongs to group
k, and Eqsk(·)[βisk] is the posterior mean of βisk, specifically µisk from equation
(A-1). Note that because we are taking expectation with respect to the posterior
distribution conditional on observing the data (including class size), class size is
in the conditioning set so that
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Eqsk(·)[ws(i)(k)niskβisk] = ws(i)(k)niskEqsk(·)[βisk] ,

which delivers the formula in (A-8).

We then compute σ2
ϵ,k for k = 1, . . . , K by solving

σ2
ϵ,k =

1

nk

N∑
i=1

ws(i)(k)Eqisk(·)
[
(yisk − βisknisk − x′iskθ)2

]
,

=
1

nk

N∑
i=1

ws(i)(k)
[
(yisk − µisknisk − x′iskθ)2 + Σiskn

2
isk

]
,

where nk is the number of students in group k, and Eqisk(βisk) and V ar(βisk) are
posterior means and variances computed in (A-1).

Step P: Propagation

The prior is from the exponential family. Hence, as in Adusumilli (2020), updat-
ing the prior parameters involves matching the sufficient statistics of the expo-
nential family between the prior and average posterior. Due to separability of
both the prior and posterior, we can separately update the prior parameters γk,
η
(c)
k , and η

(t)
k .

We update the mean and variance for each group as follows:

µk ←
1

nk

∑
s

ws(k)
∑

i:s(i)=s

µisk, (A-9)

Σk ←
1

nk

∑
s

ws(k)
∑

i:s(i)=s

{Σisk + µiskµ
⊺
isk} − µkµ

⊺
k, (A-10)

where nk is the number of observations (students) in group k. If, in the process
of optimization, a group turns out to be empty, we do not update the posterior
for that group.

To update η(c)k , we match the posterior average and prior moments of ln p(c)skl for
each l as these are the sufficient statistics of the Dirichlet family. This implies that
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η
(c)
k ≡ (η

(c)
k1 , . . . , η

(c)
kL) can be obtained as the solution to the system of L equations

Denote by η̃kj(c) the updated parameter for control class type j in group k. Then
the system of M equations in M unknowns for control group k is given by

ψ
(
η̃
(c)
km

)
− ψ

(
M∑

m=1

η̃
(c)
km

)
=

1

Nsk

∑
s

ws(k)

{
ψ
(
η
(c)
skm

)
− ψ

(
M∑

m=1

η
(c)
skm

)}
, for each m = 1, . . . ,M

(A-11)

where ψ(·) denotes the Digamma function, Nsk is the number of schools in group
k, and the right hand side variables, η(c)sk , where obtained in the E-step as the
sum of the Dirichlet prior and the vector of class size counts for school s: η(c)sk =

η
(c)
k + nsk.

The system of equations for treatment group k is analogous:

ψ
(
η̃
(t)
kl

)
− ψ

(
L∑
l=1

η̃
(t)
kl

)
=

1

Nsk

∑
s

ws(k)

{
ψ
(
η
(t)
skl

)
− ψ

(
L∑
l=1

η
(t)
skl

)}
, for each l = 1, . . . , L

(A-12)

Note that, because the test score model generates scores for students, but the class
size model generates counts of classes, Nsk in equations (A-11) and (A-12) refer
to the number of schools.

These systems of equations are solved for each group and treatment/control
status to obtain 2XK posterior parameter vectors, η̃(c)k and η̃

(t)
k for each group,

k = 1, . . . , K.
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B Additional Tables and Figures - Main Sample

Table B-1: Summary Statistics

Mean Standard Deviation

Test Score 45.30 3.586

Class Size 18.991 4.067

Female 0.489 0.5

Not White/Asian 0.319 0.466

Eligible for Free Lunch 0.473 0.499

Treated 0.465 0.499

The table presents descriptive statistics for the sample of
3813 school children used in estimation. Test Score is the
average of student scores on the math, reading, and word
skills SAT exams administered at the end of kindergarten.
Female, Nonwhite, and Eligible for Free Lunch are all bi-
nary variables.

Table B-2: Student Characteristics by Group

Group Female Nonwhite Free lunch Avg. Days Present S.D. Days Present

1 0.48 0.32 0.48 158.0 25.7

2 0.49 0.37 0.48 153.4 27.6

3 0.50 0.30 0.48 157.3 24.6

The table shows average student characteristics for students attending schools in each
group. Avg. Days Present is determined by both the length of the school year and
student absences.
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Table B-3: Teacher Characteristics by Group

Group Masters Degree Experience Nonwhite

1 0.42 8.80 0.17

2 0.31 9.52 0.17

3 0.31 9.49 0.14

The table shows average teacher characteristics for
teachers at schools in each group. Experience is mea-
sured in years.

Table B-4: School Characteristics by Group

Group Mean Class Size S.D. Class Size Cohort Size S.D. Cohort Size % Race-Segregated % SES-Segregated

1 20.92 4.23 78.5 19.3 0.81 0.29

2 20.04 3.52 82.3 29.1 0.96 0.39

3 19.92 4.00 79.9 31.3 0.92 0.36

Group Inner City Rural Suburban Urban

1 8 13 6 4

2 5 10 6 2

3 3 15 6 1

The table shows school characteristics by group membership. A school is classified as race-segregated if over 80% of
the student body belongs to a single racial or ethnic group. A school is classified as ses-segregated if either over 80% or
under 20% of the student body qualifies for free or reduced price lunch.
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Table B-5: Estimates of the Model for Test Scores

Group µk Σk σ2
ϵ,k Schools Students

1 -0.068 0.042 4.933 31 1425

(0.061) (0.065) (1.55)

2 -0.339 0.235 6.442 23 1137

(0.062) (0.15) (1.86)

3 0.106 0.001 11.852 25 1251

(0.059) (0.07) (2.07)

Covariates

Female 0.666

(0.14)

Nonwhite -1.109

(0.29)

Free Lunch -1.683

(0.20)

N 3,813

The table shows the estimated model parameters governing the
effect of class size on test scores. Regressions include controls for
gender, race, and free lunch status. Controls are constrained to be
equal across groups. The class size effects represent the effect of
a one-unit increase in class size on test score performance. Boot-
strapped standard errors from 95 boostrapped data sets are in
parentheses. Boostrapping involves first sampling schools from
the set of 79 schools that participated in the experiment and then
sampling individuals within each school.
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Table B-6: 2SLS Model

2SLS

Class Size -0.101

(0.014)

Female 0.650

(0.099)

Nonwhite -1.057

(0.209)

Free Lunch -1.776

(0.119)

First Stage F-Statistic 42237.32

Observations 3823

The table presents estimates from a two-stage least squares
regression that uses the binary randomization into a small
classroom as the excluded instrument. Heteroskedasticity-
robust standard errors are in parentheses.
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Figure B-1: Density of School-Specific 2SLS Weights

The figure plots the density of weights across schools implied by the 2SLS estimand in
equation (3). Separate densities are estimated for each group as uncovered the EAMP al-
gorithm.
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C Results From Sample With Regular + Aide Classrooms

Table C-1: Class Size Marginal Effects by Group

Group µk Σk σ2
ϵ,k Schools Students

1 -0.094 0.019 5.32 28 2046

2 -0.313 0.192 8.364 21 1609

3 0.056 0.001 10.652 30 2247

Avg. Effect -0.097 0.081 8.180

N 5902

The table shows the estimated model parameters governing
the effect of class size on test scores. Regressions include con-
trols for gender, race, and free lunch status. Controls are con-
strained to be equal across groups. The class size effects rep-
resent the effect of a one-unit increase in class size on test
score performance.

Table C-2: Treatment Class Size Support by Group

Group Class Size (Number of Students)

12 13 14 15 16 17

1 0.05 0.15 0.08 0.20 0.26 0.26

2 0.03 0.24 0.17 0.15 0.27 0.14

3 0.09 0.11 0.24 0.17 0.22 0.16

The table shows the Dirichlet prior means for each treatment
class size by group. Each reported number can be interpreted
as the fraction of observations in each cell. Zeros indicate that
a particular group does not generate classes of that size.
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Table C-3: Control Class Size Support by Group

Group Class Size (Number of Students)

15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 0.02 0 0.02 0.03 0.05 0.05 0.09 0.17 0.19 0.23 0.08 0.06 0.02 0

2 0 0 0.07 0.02 0.12 0.05 0.31 0.18 0.13 0.07 0.05 0 0 0

3 0 0.01 0 0 0.06 0.06 0.04 0.26 0.23 0.20 0.04 0.03 0.07 0.01

The table shows the Dirichlet prior means for each control class size by group. Each reported num-
ber can be interpreted as the fraction of observations in each cell. Zeros indicate that a particular
group does not generate classes of that size.

Figure C-1: Nonparametric Regressions of Test Score on Class Size

The figure plots the semiparametric relationship between class size and test scores by
group, as uncovered by the EAMP algorithm estimated on a sample that combines regular
and regular + aide classrooms in the control group. All regressions use an Epanechnikov
kernel and a bandwidth of 7.5. The regressions control for gender, race, and free lunch
status.
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D Estimation Results with K = 4 Groups

Table D-1: Class Size Marginal Effects by Group

Group µk Σk σ2
ϵ,k Schools Students

1 -0.09 0.028 4.642 27 1179

(0.073) (0.162) (3.116)

2 0.132 0.001 11.249 14 1132

(0.085) (0.096) (2.585)

3 -0.349 0.248 6.425 20 693

(0.07) (0.121) (1.844)

4 0.032 0.001 10.996 18 809

(0.063) (0.178) (3.45)

Avg. Effect -0.094 0.105 8.276

(0.032) (0.051) (0.676)

3813

N 3813

The table shows the estimated parameters governing the effect
of class size on test scores for the model with K = 4 groups.
Regressions include controls for gender, race, and free lunch
status. Controls are constrained to be equal across groups.
The class size effects represent the effect of a one-unit increase
in class size on test score performance. Bootstrapped stan-
dard errors from 95 boostrapped data sets are in parentheses.
Boostrapping involves first sampling schools from the set of 79
schools that participated in the experiment and then sampling
individuals within each school.
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