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1 Introduction

Standardized tests have been used to determine admission to higher education in the
United States since at least the 1930s, but support for them has waned in recent decades
as research has documented significant test score disparities by race and family income
(Camara and Schmidt 1999, Freedle 2003). Low-income and under-represented minority
(URM) students are also less likely to take the SAT and ACT exams, and an extensive
literature shows how removing SAT-related barriers, either through increased access to
testing facilities or mandatory exam-taking, can raise college attendance (Klasik 2013, Bul-
man 2015, Pallais 2015, Hyman 2017, Goodman 2016).1 Many universities are therefore
considering banning the SAT to increase access to college for disadvantaged students (del
Rio 2021). By inviting applications from non SAT-takers, a ban on the SAT allows for a
potentially larger and more diverse applicant pool. But, this comes at the cost of discard-
ing information that may be useful for selecting skilled candidates for admission, and
the consequences of this tradeoff for patterns of college attendance and completion are a
priori ambiguous.

The goal of this paper is to analyze how changing standardized testing policies would
affect patterns of sorting to college and rates of college completion, with particular em-
phasis on the outcomes for URM and low-income students.2 I compare a policy that
fully eliminates the SAT with an SAT-for-All policy that retains exam requirements in
admissions while simultaneously requiring all high school students take the exam. To
analyze these policies, I specify a model of the objectives of admissions departments and
how they use the SAT to achieve them. Within the model, eliminating the SAT generates
incentives for application behavior and human capital investment among high school
students. These behavioral responses may alter the composition of college applicants
and subsequently induce capacity-constrained colleges to modify their admissions crite-
ria. This paper takes seriously the notion that students respond to changes in admissions
criteria and that colleges will then have to respond to students’ behavior.

Colleges in the model aim to enroll students who are knowledgeable and racially di-
verse, and they use grades and SAT scores as signals of each student’s knowledge at
the time of application. Knowledge is treated as a dynamic latent factor that evolves
throughout high school in response to inputs that are both exogenous, like family and
school characteristics, and endogenous (study time). Eliminating the SAT has two imme-
diate effects. It causes colleges to rely more on the rest of each student’s application, their

1Throughout this paper, I use SAT to refer jointly to the SAT and ACT exams.
2Under-represented minorities include individuals who identify as Black, Hispanic, Native American,

or mixed race.
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grades and demographic characteristics, when inferring their knowledge. And, it allows
students who have not taken the SAT to apply to college.

High school students respond to these two immediate effects by solving a dynamic
discrete choice problem with choices of how much to study, whether to take the SAT, and
whether and where to apply to college. The direction of incentives for non SAT-takers
is clear. Eliminating the SAT removes a barrier to college entry, raising their incentive
to study and their probability of applying to college. However, former SAT-takers may
face a reduced incentive to study if grades are not a sufficiently precise signal of their
knowledge. The overall effect on patterns of college attendance depends on how these
endogenous student responses affect the distribution of knowledge among applicants.

I estimate the model using the Education Longitudinal Study of 2002 (ELS 2002), a rich
longitudinal survey of a cohort of students as they transition from high school to college.
The ELS 2002 contains extensive information on high school grades, SAT scores, college
applications, admissions decisions, and college attendance. I combine the ELS 2002 with
data on SAT testing locations and dates, first used in Bulman (2015), and a comparable
data set I gathered for the ACT. I leverage variation in SAT access and distance to col-
lege as exclusion restrictions that affect whether and where to apply to college to aid in
identifying college preferences for student characteristics. I estimate the model by maxi-
mum likelihood using a nested fixed point algorithm. I then use the estimated model to
evaluate several counterfactual admissions policies.

I find that eliminating the SAT from consideration at all schools causes a 0.5 percent-
age point (pp) increase in URM enrollment and a 2.8 pp increase in low-income student
enrollment. These gains are entirely driven by increases in enrollment at less selective
universities. The policy reduces sorting by knowledge: The average knowledge of stu-
dents attending elite private colleges falls by 0.21 sd, while it increases by 0.08 sd at the
least selective schools. The reduction in assortative matching causes completion rates at
elite private colleges to fall by 2.7 pp and to rise at less selective universities.

These results conflate the effects of the model’s four main mechanisms, and an in-
structive pattern emerges when examining the contribution of each component in isola-
tion. The four mechanisms are a change in admissions criteria when the SAT is elimi-
nated, endogenous applications, endogenous human capital investment, and supply side
responses by colleges in equilibrium. Holding fixed the pattern of applications and test
scores in the data, eliminating the SAT muddies application signals and reduces assorta-
tive matching by knowledge and by household income, which is correlated with knowl-
edge. Allowing for endogenous applications while fixing study time further reduces sort-
ing and raises enrollment of URMs, who are disproportionately unlikely to take the SAT.
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However, allowing for endogenous study time increases stratification by income and
knowledge. I estimate that grades are noisy measures of knowledge, so eliminating the
SAT reduces the incentive to study among former SAT-takers. This reduction in study
time causes poorer students with initially lower skills, who are closer to the admissions
thresholds, to be narrowly rejected, while richer students remain. In equilibrium, colleges
respond to the increase in applications by raising admissions standards and rejecting ap-
plicants who would have been marginal admits in partial equilibrium, further reducing
college access for low-income and URM students.

Overall, banning the SAT fails to raise URM enrollment because there are too few
high school students who fail to take the exam and who could out-compete those al-
ready applying to college. The difference in knowledge at the end of high school between
SAT-takers and non-takers is 1.15 sd. I show how combining a ban on the SAT with a hy-
pothetical intervention that raises skills for non exam-takers would instead enable many
of them to out-compete SAT-takers, causing a large increase in URM college attendance.

I compare banning the SAT with an alternative policy recommended in Dynarski
(2018) that mandates all high school students take the SAT. Like the No-SAT policy, SAT-
for-All removes a barrier to college application, but it does so without reducing the amount
of information available to colleges. Relative to an SAT ban, SAT-for-All causes the frac-
tion of URMs attending a four-year college to rise by 1 pp and completion rates for URMs
to increase by 2.2 pp as colleges manage to identify more skilled students for admission.
Low-income student enrollment is similar to the No-SAT policy.

This paper’s way of modeling admissions departs from standard approaches in the
literature. Often, admission to college is modeled as a threshold-crossing model in terms
of a continuous index (Kapor 2020). This approach would not be appropriate when some
of the measurements comprising the index, say SAT scores, are missing because of the
policy. This paper instead microfounds admissions criteria as a search for a dynami-
cally evolving latent factor, leading admissions offices to rebalance their weights towards
grades in an optimal way when SAT scores are no longer observed. This method delivers
a probability of admission for every student, with or without an SAT score.

I modify the standard dynamic factor model of Cunha, Heckman, and Schennach
(2010) and Agostinelli and Wiswall (2020) by including demographic-specific measure-
ment parameters and by letting the initial distribution of knowledge vary by a set of
covariates – such as mother’s education, income, and race – that are likely correlated
with investment prior to high school.3 Together with the use of threshold rules for ad-
mission that vary by demographic, these modifications reproduce a unique feature of the

3Saltiel (2023) estimates a static latent factor model with demographic-specific measurement parameters.
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college market in the United States, namely that admissions offices interpret grades and
test scores relative to each student’s background.4 Within this framework, the same grade
or SAT score will cause admissions offices to more aggressively update their prior if the
measurement is particularly informative for that student or if observable factors put that
student at an initial disadvantage. Colleges in the model use the Kalman Filter to generate
these updates.5

Estimates of the dynamic factor model reveal that studying is productive (Stinebrick-
ner and Stinebrickner 2008). An increase of ten hours per week causes knowledge to rise
by 0.08–0.09 sd each year. I also find that much has been decided by the start of high
school. URMs begin high school at a 0.62 sd disadvantage relative to white and Asian
students. Ninth grade knowledge is sharply increasing in mother’s education. I do not
find evidence that the SAT math or verbal exams are more biased than any other measure
in the data. If anything, GPAs show more evidence of bias than standardized tests. More-
over, GPAs are noiser than the SAT, and they are noisier for URMs than for white and
Asian students. This suggests that colleges will struggle to identify highly skilled URM
candidates for admission if they must rely more on grades.

This paper shows that modeling equilibrium in the college market is important when
analyzing large changes in admissions policies. Papers that estimate equilibrium models
of the market for college admissions in the United States include Epple, Romano, and Sieg
(2006, 2008), Fu (2014), and Kapor (2020). My paper shares the three-part application-
admission-matriculation equilibrium of Fu (2014) and Kapor (2020), but I add several
novel features. I allow the distribution of grades and test scores observed by colleges to
be endogenous with respect to the policy, I microfound college preferences for student
characteristics, and I analyze the effects of admissions policies on college completion.

The endogenous mechanisms in the model are motivated by a growing literature that
shows how pre-college human capital investment responds to changes in admissions
policies. Tincani, Kosse, and Miglino (2021) and Cotton, Hickman, and Price (2022) ana-
lyze experiments that show how high school students trade off leisure and the probability
of admission to college when deciding how much to invest in their skills. Leeds, McFar-
lin, and Daugherty (2017), Golightly (2019), and Akhtari, Bau, and Laliberté (2020) exploit

4Interpreting grades and test scores in the context of each student’s educational opportunities and family
background has been common since at least the 1990s. Bowen and Bok (2016) quote admissions deans who
explain how the same grades and SAT scores would affect admissions probabilities differently for several
hypothetical applicants.

5The Massachusetts Institute of Technology explains that they use a combination of factor analysis and
thresholds to determine whether a student qualifies for admission. A blog on their website explains their
recent decision to reinstate the SAT, stating “. . . we do not consider an applicant’s [SAT] scores at all beyond
the point where preparedness has been established as part of a multifactor analysis.” (Schmill 2022)
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changes in admissions policies at Texas public universities to show that effort increases
when policies render admission more likely but decreases when admission becomes cer-
tain. Grau (2018) and Bodoh-Creed and Hickman (2017) similarly find that effort in high
school is shaped by admissions criteria in Chile and the US. Bond et al. (2018) and Good-
man, Gurantz, and Smith (2020) show how applications respond endogenously to SAT
scores.6 This paper incorporates these multiple mechanisms in an equilibrium frame-
work, demonstrating their quantitative importance in shaping patterns of college atten-
dance in a world without the SAT.

This paper is organized as follows. The next section describes the data used for the
analysis and presents summary statistics. Section 3 describes the model that is taken to
the data and discusses some of its properties. Sections 4 and 5 discuss identification and
estimation of the model. Section 6 shows the estimated model parameters, while section
7 presents estimates of counterfactual policies and explains the mechanisms behind the
results. Section 8 concludes.

2 Data

This study uses data from the Education Longitudinal Study of 2002 (ELS 2002). The ELS
2002 randomly samples a nationally representative cohort of students who were in the
tenth grade in 2002 and follows them through high school, college, and into the labor
market. Students are surveyed four times, in 2002, 2004, 2006, and 2012. In 2006, students
are either in college or participating in the labor market and receive surveys tailored to
their status. The 2012 survey wave, eight years after graduation from high school, records
educational attainment.

The ELS 2002 contains multiple measurements of cognitive skills throughout high
school. Grade-point averages (GPAs) for each year of high school have been converted
to a common scale and are weighted by Carnegie units.7 The ELS 2002 also contains SAT
scores in math and verbal skills obtained from the College Board, and ACT scores in math,
English, reading, and science obtained from ACT, Inc. In addition, the National Center
for Education Statistics (NCES) administers exams in math and reading to all students
in the ELS 2002 in grades ten and twelve. I use the criterion-referenced (as opposed to

6Caucutt and Lochner (2020) analyze how credit constraints affect college enrollment and completion.
Otero, Barahona, and Dobbin (2021), Arcidiacono et al. (2011), and Arcidiacono (2005) analyze affirmative
action’s effects on labor market outcomes and potential mismatch between students and colleges. Dillon
and Smith (2017) consider whether uncertainty in the admissions process leads to mismatch. Arcidiacono,
Kinsler and Ransom (2023, 2022a, 2022b) show how preferences at Harvard University vary by race.

7A Carnegie unit corresponds to one course taken every day, for one period per day, for a full school
year.
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norm-referenced) math scores in the 10th and 12th grades, which do not recenter scores
each year and make it possible to quantify changes in the acquisition of skills over time.

In 2002 and 2004, respondents report how much time they typically spend studying
for classes. I average the two responses to create a single measure of average study time
in high school. Stinebrickner and Stinebrickner (2004) compare student answers to the
sort of time-use questions posed in the ELS 2002 with study time in time diaries, which
they consider to be more accurate, and find a correlation of 0.72. If self-reported study
time in the ELS 2002 is only an approximate measure of true study time, then averaging
the two measures should reduce noise. Still, it is possible that estimates of the marginal
productivity of study time in this paper represent a lower bound on its true effect.

I combine the ELS 2002 with a database of SAT testing center dates first used in Bulman
(2015) and information from yearly ACT test registration booklets I obtained from ACT,
Inc. These data allow me to construct a measure of access to the SAT. I define access to
be the number of testing dates at one’s own high school during spring of the junior year,
when students typically take the SAT. Figure A-1 in Appendix A plots the distribution of
exam access for students in the sample. The modal number of testing dates per school
is zero, the mean is 1.09 days, and some schools that host both the SAT and ACT exams
have up to seven testing dates during the course of the semester.

Test centers open after an employee at a particular school, typically a teacher or guid-
ance counselor, volunteers to act as a test coordinator and applies to the College Board or
ACT, Inc. to host the exam on a specific day. Testing sites must satisfy certain criteria, like
having a quiet examination room and a secure location to store materials, but most ap-
plications are approved. The key factor in a school becoming a testing center is therefore
whether someone at that school takes the initiative to apply. Bulman (2015) surveys fifty
test coordinators to understand their motivations. Many expressed concern that nearby
testing centers were at capacity and a desire to offer their students the exam in a familiar
environment. In this paper, I control for school type (private, public, Catholic), geography
(urban, rural, or suburban), total enrollment, and poverty rates within the school district
(obtained from the Census Small Area Income and Poverty Estimates), all of which are
likely to influence demand for testing facilities. I argue that residual variation in SAT
access is quasi-random, stemming in part from differences across schools in whether an
employee decides to apply.

This paper also exploits variation in distance to college to shift college applications.
Figure 1 shows that, relative to distance to all colleges, the distribution of distance to col-
leges where students apply is weighted towards zero, suggesting that distance may shape
application decisions. Carneiro and Heckman (2002) and Cameron and Taber (2004) ex-
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Figure 1: Distance to College8

The figure shows the density of distance to college for students in the ELS 2002. Distance is computed
between the centroid of each student’s home census block and the latitude and longitude of each college
in IPEDs. The figure plots both the unconditional density of distance in blue and the density of distance
to schools applied to in red. Distances above 3,000 miles (relevant only for Alaska and Hawaii) have been
truncated. SOURCE: U.S. Department of Education, National Center for Education Statistics, Education
Longitudinal Study of 2002 (ELS:2002), “Base Year through Second Follow-up, 2002-2006.”

press concern that distance to school may be correlated with student ability and thus en-
dogenous. The model that I describe in the next section addresses this concern by letting
distance shift demand for college conditional on a precise measure of ability, a student’s
posterior knowledge after grades and test scores in each year of high school are revealed.

After removing observations with missing data, the sample has 9, 910 observations.9

Tables 1 and 2 present summary statistics for this sample. The measurements indicate that
URMs have lower standardized test scores and GPAs. URMs have less educated mothers,
are more likely to grow up in a household headed by a single parent, and are more likely
to have been retained prior to high school. They also attend schools with higher class
sizes, where more students qualify for free or reduced-price lunch, and they grow up in
families with an average income that is about $23,000 less than white and Asian families.
URMs actually attend schools with more SAT and ACT testing dates in the spring of their
junior year, but this is largely due to white and Asian students attending smaller schools

8All figures and tables in this paper rely on data from the Educational Longitudinal Study of 2002,
henceforth cited as (ELS 2002).

9Appendix B provides details regarding the construction of the sample.
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Table 1: Summary Statistics, I

URM White & Asian

Mean SD Mean SD

Measurements

GPA, 9th grade -0.31 0.98 0.22 0.91
GPA, 10th grade -0.31 0.97 0.22 0.91
NCES Reading, 10th grade -0.34 0.95 0.23 0.94
NCES Math, 10th grade -0.41 0.92 0.26 0.94
GPA, 11th grade -0.32 0.98 0.20 0.92
SAT Math -0.57 0.90 0.08 0.93
SAT Verbal -0.51 0.92 0.09 0.95
GPA, 12th grade -0.35 1.02 0.19 0.92
NCES Math, 12th grade -0.05 1.00 0.64 1.03

Controls

Student-teacher Ratio 17.40 4.46 16.19 4.13
Free Lunch 0.28 0.23 0.15 0.16
Num Testing Dates 1.06 1.53 0.96 1.44
Residualized Num Testing Dates -0.04 1.46 0.06 1.34
Yearly Household Income 50,000 40,500 72,800 49,000

The table shows means and standard deviations (SD) for knowledge measurements and
controls in the ELS 2002. Apart from the 12th grade NCES Math exam, all knowledge
measurements have been standardized by their sample mean and standard deviation.
The 12th grade NCES math exam has been standardized by the mean and standard de-
viation of the 10th grade exam to permit longitudinal analysis of knowledge gains. I
construct a verbal score for students who take the ACT by summing the English and
reading subscales before standardizing. Free Lunch refers to the fraction of students at
the student’s school who qualify for a free or reduced-price lunch. Num Testing Dates
refers to the number of SAT or ACT testing dates held at a student’s school during the
spring of their junior year of high school. This number is then residualized on controls
for school type, geography, enrollment, and district poverty rates. SOURCE: (ELS 2002)

and Catholic or private schools where the exams are rarely held. After controlling for
school size, geography, type, and the school district poverty rate, URM students have
lower exam access, as indicated by the variable “Residualized Num Testing Dates.”

Table 2 demonstrates that URM students are less likely to take the SAT, less likely to
attend college, less likely to complete college, and less likely to complete conditional on
attending college. They also study fewer hours while in high school. When URMs attend
college, they attend very different colleges than white and Asian students. Figure A-2 in
Appendix A indicates that URMs are under-represented at highly selective colleges and
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Table 2: Summary Statistics, II

URM White & Asian

Choices

Study Hours, per week 5.87 6.49
Take SAT 0.63 0.79
Attend 4-yr College 0.33 0.49
Complete 4-yr College 0.19 0.34
Complete 4-yr College Given Attendance 0.59 0.70

Initial Conditions

Female 0.52 0.50
Retained before High School 0.10 0.06
Single Parent 0.32 0.16
Mother : High School 0.25 0.27
Mother : Some College 0.35 0.34
Mother : 4-year Degree 0.14 0.22
Mother : Postgraduate 0.07 0.11

Observations 2860 7050

SOURCE: (ELS 2002)

state flagships but are over-represented at less selective private universities and public
satellite colleges. The model I describe in the next section will assess the sources of the
college completion gap and evaluate whether alternative admissions mechanisms can
raise completion rates.

3 Model

This paper uses an equilibrium model of the college market to analyze how eliminating
the SAT affects patterns of college attendance and completion. In this section, I describe
high school students’ endogenous application and human capital investment behavior
and colleges’ optimization problem, which is affected by whether they observe the SAT.

3.1 Timing

The model has three time periods: high school, college transition, and college comple-
tion. I treat ninth grade GPA as an initial condition, and at the beginning of tenth grade
students choose how much time to allocate to studying and whether they will take the
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SAT. This choice of study time will take effect for three years. At the end of high school,
grades and SAT scores are realized for each student. These measurements depend on a
student’s ninth grade knowledge, as well as time devoted to study, educational inputs,
and idiosyncratic shocks. After these measurements are realized, the second period of the
model, the transition to college, begins.

Similar to Kapor (2020) and Fu (2014), the transition to college consists of three parts.
First students apply to college, then colleges decide which applicants to admit, and stu-
dents with multiple admissions offers matriculate to their preferred feasible alternative.

College completion, up to eight years later, occurs in the final period of the model.
Completion depends on students’ knowledge when matriculating to college, the type of
college they attend, and a set of controls.

3.2 Skill Technology and Measurement System

Knowledge is a latent variable that evolves deterministically as a result of prior knowl-
edge, study time, and educational inputs, Ii,t.10 The technology of skill formation is al-
lowed to differ by whether an individual belongs to an under-represented minority to
account for whether differences in the marginal productivity of study time and school-
ing inputs may influence study decisions. Knowledge evolves according to the following
value-added equation:

logKi,t = γK,R logKi,t−1 + βH,Rhi,t + I′i,tβ
I,R , (1)

where R ∈ {URM,WA} denotes parameters that are specific to either URM or white and
Asian students.

I allow the distribution of ninth grade knowledge to vary by a set of predetermined
covariates, Wi, as follows:

logKi,9 ∼ N
(
W′

ia, σ
2
k(Wi)

)
, (2)

where the variance of ninth grade knowledge is given by σ2
k(Wi) = exp(W′

ib). The vector
Wi includes demographic and family controls to reflect how a history of unequal invest-
ment prior to high school can lead to skill differences by the ninth grade.

Grade point averages (GPAs) and standardized tests are noisy measures of knowl-

10Throughout the paper, I use bold font to denote vectors and matrices.
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edge. In each grade, this mapping is

yR
i,t = µR

t +αR
t logKi,t + εRi,t , (3)

where µR
t is a vector of intercepts, αR

t is a vector of factor loadings, and εRi,t is a vector
of normally-distributed disturbances with mean zero and a diagonal covariance matrix.
As with the technology of skill formation, the measurement system is allowed to vary
by URM status in an unrestricted way. This allows me to conduct inference on whether
the SAT is biased against URMs and whether the informativeness of grades varies by
demographic groups (section 6). I define bias and differential signal informativeness for
measurement j in year t as follows:

Bias := µURM
t,j − µWA

t,j , (4)

Differential Signal Informativeness :=
αURM
t,j

σURM
t,j

−
αWA
t,j

σWA
t,j

. (5)

Let URMi ∈ {0, 1} indicate whether a student belongs to an under-represented minor-
ity, define the initial information set by

Ωi,9 := {URMi,Wi,yi,9, {Ii,k}12k=10} ,

and subsequent updates by Ωi,t := {Ωi,t−1,yi,t, hi,t}.11 Admissions decisions, described in
the next section, will depend on

logKi,12|Ωi,12 ∼ N(mi,12, Pi,12) ,

where mi,12 := E[logKi,12|Ωi,12] and Pi,12 := V ar[logKi,12|Ωi,12] are obtained by the Kalman
Filter (details provided in Appendix C).

The model treats grades and test scores as noisy measures of a dynamically evolving
latent state. Colleges observe these measurements and form expectations over each stu-
dent’s knowledge at the time of application by using the Kalman Filter. Eliminating the
SAT affects admissions decisions through changing the set of measurements available to
filter this latent state. The informativeness of grades is therefore particularly relevant for
college’s ability to select skilled candidates for admission without the SAT.

11Individuals have full information over the realization of future educational inputs, Ii,t. The sources
of incomplete information in the model are over future actions, realizations of test scores, admissions, and
college completion.
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3.3 Preferences

3.3.1 Colleges

Colleges are grouped into tiers, c = 1, . . . , C, each comprising a continuum of capacity-
constrained colleges that have preferences over the knowledge and diversity of matricu-
lating students.

An application to college c is defined to be a pair, (Sc
i , URMi), where Sc

i is a scalar
signal of student i’s knowledge at the time of application and URMi is the student’s de-
mographic. The signal is drawn from the distribution of twelfth grade knowledge con-
ditional on Ωi,12: Sc

i ∼ f(logKi,12 | Ωi,12) = N(mi,12, Pi,12). Hence, the signal is both
college-specific and unbiased for logKi,12.12

Denote the set of applications to school c by Ac. I define an admissions policy to be a
mapping from the space of applications to acceptance probabilities:

Policy : (R× {0, 1})Ac → [0, 1]Ac . (6)

Define λc
URM to be the fraction of students matriculating to college c who belong to

an under-represented minority: λc
URM := P(URMi = 1 | Attendi,c = 1). Colleges in tier c

have a production function that is increasing in knowledge and diversity, and they choose
an acceptance policy to solve

max
Policy∈[0,1]Ac

κcE[logKi,12|Attendi,c = 1] + (1− κc) log λ
c
URM (7)

s.t.
N∑
i=1

P(Attendi,c = 1 | Ωi,12) = N c ,

where N c is college c’s capacity, which I take to equal the number of students in the ELS
2002 who attend college c. The expectation is taken over the probability that a student
matriculates conditional on the admissions policy. This specification assumes that admis-
sions offices maximize a weighted sum of knowledge and diversity and that they satisfy
their capacity constraints in expectation.13 The weights are allowed to vary by college tier.
While an admissions policy is defined to be a mapping from the space of applications to

12Drawing signals from f(logKi,12 | Ωi,12) presumes that colleges observe study effort. A more realis-
tic approach would have colleges integrate over the distribution of study effort, rather than observing it,
when deciding whom to admit. It is, however, unlikely that after observing measurements in each year
of high school, yi,9, . . . , yi,12, integrating over study time would generate markedly different predictions of
logKi,12. For computational reasons, this approach was not adopted.

13I do not directly model tuition and assume that both tuition setting and financial aid formulas are
invariant to the counterfactuals explored in this paper.

13



acceptance probabilities, the structure of the problem leads to the following proposition,
which states that admissions policies can be characterized by a pair of threshold rules.

Proposition 1. The optimal policy for college c is a pair of demographic-specific threshold rules:
(Sc

0
∗, Sc

1
∗).

Proof. Let the policy rule for students with URMi = 1 be arbitrary. Suppose the policy
rule for students with URMi = 0 is not a threshold rule. Then there exist two students,
l and m, with probabilities of matriculation conditional on admission given by pl and
pm, such that Sc

l > Sc
m but P(Acceptl) < 1 and P(Acceptm) > 0. Consider the following

modified admission policy: P̃(Acceptl) = P(Acceptl) + ε , P̃(Acceptm) = P(Acceptm)− ε pl
pm

.
The modified acceptance rule satisfies the constraint and leaves λc

URM unchanged, but
increases E[logKi,12 | Attendi,c = 1]. Hence, the optimal policy for URMi = 0 students is
a threshold rule in Sc

i .
Let the policy rule for students with URMi = 0 be arbitrary. By similar argument,

the optimal admissions policy for URMi = 1 students is a threshold rule. Hence, the
optimal admissions policy is a pair of threshold rules, (Sc

0
∗, Sc

1
∗), that (potentially) differ

by demographic.

Formulating college preferences in this way is equivalent to a model where colleges
observe Ωi,12 and admit students with probability P(logKi,12 > Sc∗

URMi
| Ωi,12). The use of

threshold rules combined with a preference for URMs implies that colleges would choose
to accept only URM students if they had greater average knowledge than white and Asian
students and existed in the population in sufficient proportions. This is, however, not an
empirically relevant scenario. The distribution of skills in the ELS 2002 together with a
value of κc < 1 will cause the threshold to be lower for URMs than for white and Asian
students, Sc∗

1 < Sc∗
0 , but for students from both groups to attend each tier.

3.3.2 Students

Students in the model choose how much to study, whether to take the SAT while in high
school, and whether and where to apply to college upon graduation. I first describe the
three parts of the college transition phase – application, admission, and matriculation – in
reverse chronological order before characterizing the problem of a high school student.

Matriculation: The indirect utility function for a student who attends college c is ex-
pressed as the following linear function of a fixed effect for that school, net tuition, dis-
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tance to college, the probability of completing college, and a Type 1 extreme value shock:

Ui,c(Ωi,12) = Ūc + βTNetTuitioni,c + βD,cDisti,c + βPP (Completei,c = 1 | Ωi,12, c)︸ ︷︷ ︸
Vi,c

+εi,c . (8)

Net tuition is the difference between posted tuition at school c, which may vary depend-
ing on whether the student is in-state or out-of-state, and the financial aid student i would
receive at school c, NetTuitioni,c = Tuitioni,c−Aidi,c.14 The probability of completing col-
lege depends on Ωi,12, meaning that students form their expectation based on measure-
ments that are observed by both students and colleges. Distaste for distance, βD,c, varies
by whether the college is public or private. Vi,c represents the deterministic component of
utility. The value of not attending college varies with local labor market conditions and
geographic controls as follows:

Ui,0 = βW log

(
EarnHS

i

EarnCOLL
i

)
+ βSSuburbi + βRRurali + εi,0 , (9)

where the first term is the gender-specific average earnings differential between high
school and college graduates in student i′s county. Earnings differentials are computed
using the Quarterly Workforce Indicators. A positive value for βW would indicate that
students are less likely to attend college where earnings for non-college workers are high
relative to the earnings of college graduates. Students choose from among their admis-
sions portfolio, B, the option that maximizes their utility. The chosen option, Ci, satisfies

Ci = argmax
c∈B

{Ui,c} , (10)

and the probability of making choice Ci given admissions portfolio B is

P (Ci = c | B,Ωi,12) =
exp(Vi,c)∑
k∈B exp(Vi,k)

, (11)

where B always contains the option of not attending college and obtaining utility Ui,0.

The value of being admitted to portfolio B is given by the following log-sum term:

Ui,B := E[max
c∈B

Ui,c] = log

(∑
c∈B

expVi,c

)
. (12)

Admissions: Each student’s application portfolio is transformed into an admissions

14Appendix D provides details on the computation of financial aid at each school.
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portfolio depending on whether their application signals exceed the thresholds at the
schools where they apply. I assume that application signals are iid draws from f(logKi,12 |
Ωi,12), so the probability that student i obtains admissions set B given application set A is

P (B | A,Ωi,12) =
∏
c∈B

P(Sc
i > Sc∗

URMi
| Ωi,12)

∏
d∈A\B

P(Sd
i < Sd∗

URMi
| Ωi,12) . (13)

The distribution f(logKi,12 | Ωi,12) is fully characterized by its mean and variance,
(mi,12, Pi,12), so I replace P (B | A,Ωi,12) with P (B | A,mi,12, Pi,12). This means that, regard-
less of the number of measurements in Ωi,12, the state space for each individual is two-
dimensional. High school students who are deciding how much to study and whether to
take the SAT form expectations over (mi,12, Pi,12) rather than over the realization of each
individual GPA and exam score.

Application: Applicants to portfolio A pay a fixed cost of applying to each school and
then a marginal cost of applying to additional schools within the same tier. Fixed and
marginal costs may vary by school so that the total application cost can be written as

costi(A) =
C∑
c=1

FCi,c(A) +MCi,c(A) + εi,A , (14)

where εi,A represents unobserved factors that shift application costs and is modeled as a
Type 1 Extreme Value shock with scale parameter λA. Letting nc(A) denote the number of
applications to school c in portfolio A, I specify the fixed and marginal costs as follows:

FCi,c(A) = 1c∈A
(
δ(1)c + δ(2)c Inci + δ(3)c MomCollegei + δ(4)c Disti,c

)
,

MCi,c(A) = max{nc(A)− 1, 0}
(
δ(5)c + δ(6)c Inci

)
,

where MomCollegei = 1 if individual i’s mother has a college degree. Fixed costs there-
fore vary by household income, mother’s education, and the distance between student i’s
home and college c, while marginal costs vary by household income.

Students who apply to a portfolio, A, obtain a benefit that integrates over the expected
utility of every possible admissions subset, B, that could be obtained from A. Formally,
the utility of submitting application portfolio A is:

V Coll
i (mi,12, Pi,12, A) =

∑
B∈A

P (B | A,mi,12, Pi,12)Ui,B(mi,12, Pi,12)− costi(A) , (15)

where Ui,B is written as a function of the state variables (mi,12, Pi,12) to denote that the
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value of admissions set B depends on the probability of completing college at each school
within B, which in turn varies with the mean and variance of the student’s knowledge at
the end of high school.

The student’s portfolio choice problem is

Ai(mi,12, Pi,12, SATi) = argmax
A∈A(SATi)

{V Coll
i (mi,12, Pi,12, A)} . (16)

The set of possible application portfolios, A(SATi), depends on whether the student took
the SAT while in high school. A(1) is the universe of all possible application portfolios,
while A(0) = {0}, because all four-year colleges required the SAT during this time.15 I
vary A(0) under counterfactual policy regimes that allow students to apply to college
even without an SAT score. The probability of applying to application set A is

P (A | mi,12, Pi,12, SATi) =
exp

(
V Coll
i (mi,12,Pi,12,A)

λA

)
∑

A′∈A(SATi)
exp

(
V Coll
i (mi,12,Pi,12,A′)

λA

) . (17)

The value of beginning the college application phase with state variables (mi,12, Pi,12, SATi)

is given by the log-sum term

V
Coll

i (mi,12, Pi,12, SATi) := E[maxA∈A(SATi)V
Coll
i (mi,12, Pi,12, A)]

= λA log

 ∑
A∈A(SATi)

exp

(
V Coll
i (mi,12, Pi,12, A)

λA

)
High School: Students in high school have preferences over hours spent studying,

Hi(a), taking the SAT, SATi(a), and their expectation of admission to college as follows:

UHS
i (a) = (ZH

i

′
γH)Hi(a) + (γS + γZ

SZ
SAT
i + γInc

S Inci)SATi(a) + εi(a)+∫
V

coll

i (mi,12, Pi,12, SATi(a))dF (mi,12, Pi,12 | Ωi,9, a) , (18)

where a refers to the action chosen by the student. The disutility of studying varies by
covariates, ZH

i , that include family income, gender, private school attendance, and 9th
grade skills, mi,9 = E[Ki,9 | Ωi,9]. The preference for taking the SAT is allowed to vary by
both income and exam access, ZSAT

i , as defined in section 2. The SAT cost shifters permit

15Over 85% of schools within each tier required the SAT in 2004. A small number of liberal arts colleges
were SAT-optional. The model assumes an SAT score is necessary to submit an application to each college
tier.

17



the model to capture logistical challenges that limit students’ ability to take the exam
and thus apply to college, while the study cost shifters capture differences in cognitive
skills and environmental factors that influence students’ ability or inclination to study.
Hi(a) denotes the average amount of time spent studying each week while in high school.
Students make this decision at the beginning of 10th grade, and study time is assumed to
take effect for three consecutive years, i.e. hi,t(a) = Hi(a) for t = 10, 11, 12 in equation (1).
εi(a) is a Type 1 Extreme Value shock with scale normalized to one.

High school students choose an action to maximize their utility subject to the technol-
ogy of skill formation and the measurement system. Their problem is written as follows:

max
a

UHS
i (a) (19)

subject to

logKi,t = γK,R logKi,t−1+βH,RHi(a) + I′i,tβ
I,R ,

yR
i,t = µR

t +αR
t logKi,t+εRi,t for t = 10, 11, 12 and R ∈ {URM,WA} .

Note that students do not observe Ki,t. The model assumes that students use the
Kalman Filter to forecast the distribution of (mi,12, Pi,12) given their initial conditions, Ωi,9,
and their choice, a. The student cares about how their actions in high school influence
their probability of admission to college and their chance of completing college. The true
value of Ki,t is irrelevant for admissions decisions, because colleges base their decisions
on signals drawn from f(logKi,12 | Ωi,12) and Ki,12 /∈ Ωi,12. Knowing the true value of
Ki,12 might help students predict college completion, but, for the sake of simplicity, I do
not add Ki,t as an additional continuous state variable, and instead let completion depend
on the same state variables, (mi,12, Pi,12), as admission. This implies that students do not
precisely know their own cognitive skill but learn about it from grades and SAT scores.16

3.4 College Market Equilibrium

A College Market Equilibrium is defined as a set of policy functions for students {ai, Ai, Ci}Ni=1,
a set of threshold rules {Sc∗

URM}1URM=0 for colleges c = 1, . . . , C, and a distribution of
grades and SAT scores, {Ωi,12}Ni=1, such that

1. Given the admissions thresholds {Sc∗
URM}1URM=0 for c = 1, . . . , C, and the state vari-

ables in each period, the policy functions, {ai, Ai, Ci}Ni=1, solve students’ maximiza-
tion problems in (19), (16), and (10); and

16Stinebrickner and Stinebrickner (2012) and Arcidiacono et al. (2016) study how college students learn
about themselves through the realization of course grades.
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2. The admissions thresholds, {Sc∗
URM}1URM=0 for c = 1, . . . , C, maximize colleges’ ob-

jective function in (7) subject to their capacity constraints, taking as given the real-
ized distribution of student test scores, {Ωi,12}Ni=1, the applications that have been
submitted, {Ai}Ni=1, the matriculation rules of the students {Ci}Ni=1, and the actions
of other colleges; and

3. The distribution of realized scores that colleges take as given, {Ωi,12}Ni=1, is consistent
with the initial conditions, {Ωi,9}Ni=1, and student decision rules, {ai}Ni=1.

The equilibrium notion is a standard Nash Equilibrium with a consistency condition,
and it is characterized by a system of equations in terms of the best response functions for
all C colleges. These best response functions are derived from the first-order conditions
of the college optimization problem in equation (7) and form a system of 2×C equations
in 2× C unknowns. The two equations for college c are:

∂P(Attendi,c=1)

∂Sc
1
∗

∂P(Attendi,c=1)

∂Sc
0
∗

=
κc

∂E[Sc
i |Attendi,c=1]

∂Sc
1
∗ + (1− κc)

∂P(i=URM |Attendi,c=1)

∂Sc
1
∗ /P(i = URM |Attendi,c = 1)

κc
∂E[Sc

i |Attendi,c=1]

∂Sc
0
∗ + (1− κc)

∂P(i=URM |Attendi,c=1)

∂Sc
0
∗ /P(i = URM |Attendi,c = 1)

,

N∑
i=1

P(Attendi,c = 1 | Ωi,12) = N c .

I do not prove existence or uniqueness of the equilibrium. For certain extreme param-
eter values, colleges will be unable to satisfy their capacity constraints and an equilibrium
will not exist. However, such a scenario is not empirically relevant. I have always been
able to solve for an equilibrium, and I have never found multiple equilibria for a fixed set
of parameter values. Different starting guesses for the admission thresholds converge to
the same equilibrium, and small perturbations of the parameters produce equilibria with
nearby thresholds. This suggests that the optimizer is not jumping between equilibria as
it searches over the parameter space.17

3.5 College Completion

The ELS 2002 records whether each individual obtains a bachelors degree within eight
years of graduating from high school. I model college completion as a production func-
tion that depends on student inputs, Ki,12, the tier of school the student attends, and

17Appendix G explains how I solve the model.

19



controls Xi ⊆ Wi as follows:

Completei,c = 1(ω(1)
c + ω(2)

c logKi,12 +X′
iω

(3) + ηi > 0) , (20)

where ηi ∼ N(0, 1).18 I let the constants in equation (20) vary by college, thereby capturing
both observed and unobserved factors that influence rates of completion at each college.
Students, who do not observe Ki,12, compute their completion probability by integrat-
ing over it using the distribution f(logKi,12 | Ωi,12) when deciding where to matriculate.
Hence, P (Completei,c = 1 | Ωi,12) in equation (8) is given by

P (Completei,c = 1 | Ωi,12) =

∫
P(Completei,c = 1 | logKi,12)dF (logKi,12 | Ωi,12) . (21)

3.6 Discussion

The model assumes that each college prioritizes the knowledge and racial diversity of its
student body. Specifying college preferences in this way is consistent with their mission
statements, nearly all of which express a desire to enroll diverse and academically pre-
pared students.19 Papers that model college admissions all assume that colleges value
cognitive skill. Epple, Romano, and Sieg (2006) additionally give colleges preferences
for socioeconomic diversity, while Kapor (2020) and Epple, Romano, and Sieg (2008) add
preferences for racial diversity. My choice of giving preferences for racial diversity is
consistent with a principle goal of many who advocate for eliminating the SAT, namely
to increase access to college for URMs (Soares 2020). Even without giving schools direct
preferences for socioeconomic diversity, the model closely matches sorting to college by
household income (section 6.4).

There is some concern that highly selective schools may place substantial emphasis
on non-academic factors like athletic or musical skill. This is most plausible at tier one
schools, where athletes constitute a significant share of enrollment. A correlation between
preferences for these skills and the demographics of students possessing them may bias
estimates of university preferences for diversity. To alleviate this concern, Appendix E
shows that admissions chances for URM and white and Asians students at all schools
are monotonically increasing in logKi,12. This suggests that the admissions model in the
paper predicts who is admitted to these schools quite well. I also find that tier one colleges

18Xi includes URM status, family income, and an indicator for whether the mother has a college degree.
19Of the top 50 universities ranked by US News and World Report in 2022, 47 have clearly defined mission

statements, of which 42 mention knowledge directly in the statement and 41 mention diversity or have a
separate statement affirming a commitment to diversity. Schools that do not directly mention these words
use related words like intellectual, discovery, and inclusion.
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place a relatively low weight on diversity (Table 7), which puts an upper bound of the
extent to which preferences for other factors contribute to diversity at these schools.

Eliminating the SAT in the model sets in motion a range of behavioral responses by
high school students. First, it allows a new pool of students to apply to college. The
model predicts that the new applicants will have a low application cost, as determined
by income, distance to college, and mother’s education, and either a high probability
of admission or a high value for college attendance. Second, banning the SAT raises
the incentive to study for non SAT-takers, for whom college may now be in reach, but
weakens it for former SAT-takers, by inducing more noise in the relationship between
study effort and college admission. The overall effect of removing the SAT boils down
to how these endogenous responses affect the distribution of knowledge among college
applicants in the new equilibrium.

The model allows for Roy-style sorting into college (Roy 1951). Students have prefer-
ences over college completion in equation (8), which is a reduced-form way of capturing
both the pecuniary and nonpecuniary benefits of a college degree, while not attending
college (equation 9) depends on the relative earnings of high school and college gradu-
ates in the county where the student attends high school. Students with a comparative
advantage in college completion will therefore be more likely to attend college, while
those with better labor market prospects will more likely enter the labor market after
high school.

The model also allows for the possibility of mismatch in college completion (Bleemer
2022, Arcidiacono et al. 2014, Arcidiacono et al. 2011). A low-skilled student would be
mismatched at a tier one school, for example, if ω(1)

1 < ω
(1)
2 and ω

(2)
1 > ω

(2)
2 in equation

(20). In this case, students with low logKi,12 would be more likely to complete at tier
two schools, but students with high logKi,12 would be more likely to complete at tier one
schools because of the greater return to knowledge at these schools.

There is some debate over whether rational expectations (RE) or some other form of
expectations best characterize student perceptions of the admissions process.20 In this
paper, I give students RE over their probability of admission to college and over the effect

20Cotton, Hickman, and Price (2022) show in a field experiment that investment in human capital in the
presence of affirmative action (AA) is consistent with rational expectations. Arcidiacono et al. (2020) col-
lect data on subjective earnings expectations and occupational choice probabilities and find that they are
highly predictive of future earnings and occupational choices. On the side of biased expectations, Hastings,
Neilson, and Zimmerman (2015) demonstrate that students who choose unprofitable college degree pro-
grams considerably overestimate the earnings of past graduates while high-ability students have relatively
accurate beliefs. Wiswall and Zafar (2015) and Delavande and Zafar (2019) find that providing accurate in-
formation about wages causes students to update their beliefs but has little effect on their choices, suggesting
the presence of large nonpecuniary preferences for the type of college and field of study.
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Table 3: Aggregation of Four-year Colleges into Groups

Type Tier Barron’s Rank Description Examples

Private 1 1 Elite Harvard, Swarthmore, Univ.
of Chicago, USC

2 2/3 Highly selective Univ. of Miami, DePaul, Pep-
perdine

3 4/5/6 Less selective Univ. of Mobile, Concordia
University-St. Paul, Mon-
mouth University

Public 4 1/2 Elite Univ. of Michigan, UCLA,
UNC-Chapel Hill

5 3 Most state flag-
ships

Univ. of Wisconsin-Madison,
Univ. of Arizona, most
SUNY campuses

6 4/5/6 Satellite campus,
some flagships

Alabama A&M, Boise State,
Northern Kentucky

of study time on academic performance. The ELS 2002 does not provide sufficiently rich
data on subjective expectations to permit a major departure from RE.

3.7 Aggregation

This paper analyzes attendance and completion at four-year colleges. I group colleges ac-
cording to a combination of their Barron’s selectivity ranking and type (public vs private
non-profit). The exact groupings are depicted in Table 3. These groupings have been cho-
sen so that the analysis can speak to admissions practices at an identifiable set of schools
– like elite public and private universities and state flagships – while retaining a suffi-
ciently large sample size in each group to estimate preferences. Tiers one through three
correspond to private colleges and universities, ranked in descending order of selectivity,
while tiers four through six are public universities, ranked in descending order of selec-
tivity. Community colleges are grouped together with no college as part of the outside
option. Colleges in the same tier are assumed to have the same preferences and admis-
sions thresholds. Classifying colleges in this manner is consistent with the purpose of the
Barron’s selectivity rankings, which aim to group schools together that have a common
admissions standard.

Although it reduces the computational burden, aggregation creates challenges. Pref-
erences for college in equation (8) depend on tuition and the distance student i would
need to travel to attend school c. Which of the many schools within tier c should should
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determine the values of tuition and distance, (Disti,c, Tuitioni,c)? In the analysis that fol-
lows, I choose the reference school for individual i to be the closest school within tier c.21

Tuition for this reference school is in-state tuition when the student and school are located
in the same state and out-of-state tuition otherwise.

To limit the size of the choice set, I allow students to send up to two applications to
each college tier. I do not allow students to apply to all possible permutations of colleges,
but instead limit them to the set of unique application portfolios in the data. Hence, while
there are 36 = 729 potential portfolios with up to two applications per tier, students in the
model can choose from among the 584 unique portfolios observed in the data.

4 Identification

4.1 Dynamic Factor Model

When students submit an application to college, the admissions office observes a signal
drawn from the distribution of latent knowledge conditional on Ωi,12. Estimating the
model requires identifying the parameters that determine this distribution, which consist
of the skill technology (equation 1) and the measurement system (equations 2 and 3).

Identification of the dynamic factor model follows from arguments in the literature
(Cunha, Heckman, and Schennach 2010; Agostinelli and Wiswall 2020; Williams 2020). It
is possible to write the entire vector of measurements throughout high school as a func-
tion of the initial knowledge draw, logKi,9.22 To reduce notational clutter, the following
equations condition on µi,t, Hi, Wi, and Ii,t:

yi,9

yi,10

yi,11

yi,12

 =


αR

9

γK,RαR
10

γK,R2
αR

11

γK,R3
αR

12


︸ ︷︷ ︸

A

logKi,9 +


εRi,9

εRi,10

εRi,11

εRi,12

 ,

21In many cases, this is the very school to which students apply. When students in the ELS 2002 apply to
a school within in particular tier, the school they apply to is the closest one to their home between 20% and
50% of the time, depending on the tier. When the school that students apply to is not the closest within a
given tier, it will often be the second closest, and distance to this school will be correlated with distance to
the closest school, limiting the severity of measurement error.

22Appendix F explores whether adding a stochastic shock to equation (1) affects the inferences drawn
from the dynamic factor model. It does not, and since identifying a model with this shock requires addi-
tional normalizations beyond those discussed in this section, the main analysis uses a deterministic skill
technology.
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where logKi,9 is one-dimensional, and yi,t, αR
t , and εRi,t are vectors with lengths that vary

by t. As long as A contains at least three measurements, A satisfies the row deletion prop-
erty and it is possible to separately identify AΦA′ from Σε, where Φ := var(logKi,9).23 A
further normalization is needed to separately identify A and Φ. This is achieved by ex-
cluding a constant from Φ(Wi) = exp(W′

ib), so that Wi = 0 implies that Φ(Wi) = 1. With
this normalization, (AΦA′)1,1 identifies α9.

A is now separately identified from Φ, but it is still necessary to identify γK,R sepa-
rately from the other factor loadings, αR

10, αR
11, and αR

12. It would, in principle, be possible
to scale up γK,R by c and scale down αR

10, αR
11, and αR

12 by c, c2, and c3, respectively. I am
able to rule out this observational equivalence, because the criterion-referenced NCES
math exams in grades 10 and 12 are scored on the same vertical scale, which Agostinelli
and Wiswall (2020) show implies that αR

10,j = αR
12,j and µR

10,j = µR
12,j for j equal to the NCES

math exam and R = URM,WA.24

The mean of the latent factor is not separately identified from the mean of the mea-
surements and is typically normalized to zero. This paper instead lets the mean of logKi,9

depend on a vector of initial conditions: E[logKi,9 | Wi] = W′
ia. Note that it is not

possible to identify a level shift in the constant for ninth grade measurements for under-
represented minorities, µURM

9 , from a shift in the initial mean of knowledge for under-
represented minorities, E[logKi,9 | URMi = 1]. A normalization is necessary, and I
constrain the NCES math exams to have the same constants regardless of demographic:
µURM
10,j = µWA

10,j and µURM
12,j = µWA

12,j for j equal to the NCES math exam. This assumption
is termed scalar invariance, and it means that there cannot be differences across demo-
graphics in how students interpret and answer the questions on the exam. Under this
scalar invariance assumption, E[logKi,9 | URMi = 1] can be identified separately from
E[logKi,9 | URMi = 0].25

4.2 Identification of College Completion and Preference Parameters

College preferences for diversity, 1−κc, are identified by the measurements of marginally
admitted URM and white and Asian applicants. Lower GPAs and SAT scores for marginal
URM admits relative to marginal white and Asian admits would identify a positive pref-
erence for diversity. This paper exploits variation in exam access and distance to col-

23This is proven by Theorem 5.1 in Anderson and Rubin (1956).
24I still allow for σR

10,j to differ from σR
12,j for the NCES math exams, so that the signal-to-noise ratios of

the two exams may differ.
25Appendix F shows that the inferences drawn from the dynamic factor model are robust to alternative

normalizations.
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lege, which are excluded from college preferences but shift the probability of applying
to college. Appendix A presents estimates from first-stage regressions of applications to
college on exam access (Table A-1) and distance to college (Table A-2). The regressions
show that exam access increases applications to college, while distance to college affects
where students apply. The exclusion restrictions provide reassurance that the model is
not identified solely on the basis of functional form assumptions.

This paper analyzes how counterfactual admissions policies affect sorting to college
and rates of college completion. The model generates estimates of treatment effects for
college completion at school j relative to school k, Completeij(Ki,12) − Completeik(Ki,12).
These treatment effects are identified by randomness in admissions signals that causes
students with the same Ki,12 to have different admissions sets and thus attend different
colleges. Distributional plots of logKi,12 by school in section 6 reveal that there is consid-
erable overlap in the knowledge distribution across colleges and thus sufficient support
to analyze these treatment effects.

5 Estimation

I estimate the model by deriving the likelihood function and optimizing it using a Nested
Fixed Point algorithm (NFXP). In estimation, I make use of the three NCES exams present
in the ELS 2002, which are not observed by colleges, to aid in identification of the dynamic
factor model. For clarity I distinguish between yi,10 and ỹi,10 = (yi,10, y

(j)
i,10, y

(k)
i,10) for j and k

equal to the NCES math and reading exams, and between yi,12 and ỹi,12 = (yi,12, y
(j)
i,12) for

j again equal to the NCES math exam. Colleges observe Ωi,12 while the econometrician
observes

Ω̃i,12 := {Ωi,9, ỹi,10,yi,11, ỹi,12, hi,10, hi,11, hi,12} .

For each student, I observe the college attended, Ci, the admissions set, Bi, the appli-
cation set Ai, their observed measurements, (yi,9, ỹi,10,yi,11, ỹi,12), their actions while in
High School, ai, and their initial conditions, Ωi,9. I also observe whether an individual
graduates from college, Completei,c. Letting θ denote the entire set of model parameters,
the likelihood contribution for individual i is

li(Completei,c,Ci, Bi, Ai, ỹi,12,yi,11, ỹi,10,yi,9, ai | Ωi,9, θ) = P (Completei,c | Ci, Ω̃i,12, θ)×

P (Ci | Bi,Ωi,12, θ)× P (Bi | Ai,Ωi,12, θ)× P (Ai | Ωi,12, ai, θ)×

f(ỹi,12,yi,11, ỹi,10 | ai,Ωi,9, θ)× P (ai | Ωi,9, θ)× f(Ωi,9; θ) , (22)
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where P (Completei,c | Ci, Ω̃i,12, θ) comes from equation (21); P (Ci | Bi,Ωi,12, θ) comes
from equation (11); P (Bi | Ai,Ωi,12, θ) comes from equation (13); P (Ai | Ωi,12, ai, θ) comes
from equation (17); f(ỹi,12,yi,11, ỹi,10 | Ωi,9, ai, θ) comes directly from the technology and
measurement system in equations (1) and (3); P (ai | Ωi,9, θ) is the solution to the problem
of a high school student in (19); and f(Ωi,9; θ) are the initial conditions that vary with Wi

in equation (2).26

I choose θ to minimize the log-likelihood function:

L(θ) =
N∑
i

log li(Completei,c, Ci, Bi, Ai, ỹi,12,yi,11, ỹi,10,yi,9, ai | Ωi,9, θ) .

Optimization proceeds in two steps. The first step searchs over the parameters that
govern the dynamic factor model and college completion. It is possible to obtain consis-
tent estimates of these measurement and technology parameters by optimizing over the
following partial likelihood,

N∑
i=1

logP (Completei,c | Ci, Ω̃i,12, θ) + log f(ỹi,12,yi,11, ỹi,10 | ai,Ωi,9, θ) + log f(Ωi,9; θ) , (23)

which does not require solving for equilibrium in the college market. The second step
searches over the preference parameters for both students and colleges by maximizing
the remainder of the log likelihood function:

N∑
i=1

logP (Ci | Bi,Ωi,12, θ) + logP (Bi | Ai,Ωi,12, θ) + logP (Ai | Ωi,12, ai, θ) + logP (ai | Ωi,9, θ)

(24)

I use the delta method to obtain standard errors for the parameters that are optimized
through the second step.27 .

26SAT math and verbal scores are not observed for all students, but I model them as missing at ran-
dom conditional on the latent factor, logKi,t. The likelihood contributions of the measurement system,
f(ỹi,12,yi,11, ỹi,10 | ai,Ωi,9, θ) in equation (22), therefore do not require a Tobit-style selection correction.
Selection into SAT-taking occurs on the basis of logKi,t, but not on SAT-specific shocks (εi,t in equation
3), which is consistent with the literature that typically treats standardized test scores as loading only onto
cognitive skills in multidimensional factor models of human capital (Carneiro, Hansen, and Heckman 2003,
Heckman, Stixrud, and Urzua 2006, Cunha, Heckman, and Schennach 2010).

27Appendix H describes how the standard errors are computed.
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6 Results

6.1 Dynamic Factor Model

The parameters of the initial skills distribution, in Table 4, reveal dramatic differences
in ninth grade knowledge across individuals. The normalizations discussed in section
4.1 mean that the coefficients in the column labeled Mean can be interpreted in terms
of standard deviations. The table shows that average ninth grade knowledge is 0.62 sd
lower for URMs relative to white and Asian students. Students who were retained prior
to high school have nearly three-quarters of a sd lower knowledge, students who grew up
with a single parent lag behind by 0.12 sd, and initial knowledge is sharply increasing in
mother’s education. The coefficient on household income indicates that initial knowledge
is higher by 0.09 sd for each additional $100 spent on the child per week.28 The variance
of initial knowledge is lower for girls and students growing up in richer households.
Retained students have lower variance by 0.30 log points, consistent with them typically
being selected from the left tail of the skill distribution.

Table 5 displays estimates of µR
t for R = URM,WA. The table can be used to assess

whether grades and exams are biased against URMs, as µR
t governs level shifts in the

measurements across demographic groups after controlling for knowledge. Recall that
the identifying normalization discussed in section 4.1, µURM

10,j = µWA
10,j for j equal to the

NCES math exam, rules out bias in this exam. The numbers in Table 5 should therefore
be interpreted as bias relative to this exam.29 There does not appear to be evidence that
the SAT is biased against URMs. In fact, URMs score marginally higher than might be
expected conditional on their knowledge. The estimated parameters in Table 5 suggest
that, if anything, GPAs are more biased against URM students than standardized exams.30

Even if the SAT is not biased against URMs, its informativeness may still vary across
demographic groups. The right panel of Table 5 presents estimates of signal-to-noise ra-
tios for the same measurements. For a given measurement, yt,j , the signal-to-noise ratio is
computed as αt,j/σt,j . The table indicates that GPAs become worse signals in later years
of high school. It also shows that the standardized exams convey significantly greater in-
formation than GPAs, with the math portion of the SAT and the math exams administered

28I assume, consistent with a range of estimates reviewed in Donni (2015), that families spend one quarter
of their household income on the child. The median value of this variable in the data, 3, represents $300 per
week and corresponds to a yearly income of $62,400 (3× 100× 1

0.25 × 52 = 62400).
29Appendix F shows that the inferences in the table are robust to alternative normalizations.
30Implicit bias among teachers, as measured by the Implicit Association Test, has been shown by Carlana

(2019) and Van den Bergh et al. (2010) to predict both gender and racial test scores gaps and could be a
source of the GPA biases seen here.

27



Table 4: Parameters Governing Initial Distribution of Knowledge

Mean Log Variance

URM -0.62 0.03
(0.03) (0.05)

Female -0.05 -0.11
(0.02) (0.03)

Retain -0.73 -0.30
(0.04) (0.06)

Single Parent -0.12 0.00
(0.03) (0.04)

Mother: High School 0.20 0.01
(0.04) (0.06)

Mother: Some College 0.36 -0.03
(0.04) (0.06)

Mother: Bachelors 0.66 0.04
(0.05) (0.06)

Mother: Postgraduate 0.85 0.04
(0.06) (0.07)

HH Income 0.09 -0.02
(0.01) (0.01)

The table presents estimates of parameters governing the initial distribution of
knowledge in the ninth grade. The mean and variance have been normalized
to 0 and 1, respectively, for individuals whose covariates are all equal to 0. HH
Income is measured in hundreds of dollars per week. High school dropout is
the omitted education category. Details regarding the distribution of knowl-
edge are provided in section 3. SOURCE: (ELS 2002)

by the NCES being particularly informative. GPAs in every grade are less informative for
URMs than for white and Asian students. The math portion of the SAT is also a worse
signal for URMs, while the NCES math exams are more informative for URMs.31

The parameters of the measurement system therefore indicate that the SAT does not
appear to be biased against URMs. But, there is merit to the concern that the math portion
of the SAT may not be as informative for a URM student as it is for a white or Asian
student. The same can also be said for grades in high school. Much of the literature on
grading practices, for example Botelho, Madeira, and Rangel (2015) and Rauschenberg
(2014), has focused on the first moments of grades. The results presented here suggest
that second moments may also vary across demographic groups.

31This conclusion rests on an assumption of configural invariance, namely that the latent factor identi-
fied by the measurement system reflects the same underlying traits for both URMs and white and Asian
students (Putnick and Bornstein 2016).
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Table 5: Bias and Signal-to-Noise Ratios

µR
t

αt,j

σt,j

URM WA Difference URM WA Difference

GPA, 9th grade -0.20 -0.16 -0.04 0.66 0.90 -0.24
(0.03) (0.03) (0.02) (0.03) (0.03) (0.03)

GPA, 10th grade -0.31 -0.27 -0.04 0.63 0.86 -0.23
(0.03) (0.03) (0.02) (0.03) (0.03) (0.02)

GPA, 11th grade -0.42 -0.37 -0.05 0.54 0.73 -0.19
(0.02) (0.02) (0.02) (0.02) (0.02) (0.10)

GPA, 12th grade -0.53 -0.38 -0.15 0.41 0.53 -0.12
(0.02) (0.02) (0.03) (0.01) (0.02) (0.05)

SAT Math -0.98 -1.04 0.06 1.55 1.78 -0.22
(0.03) (0.03) (0.02) (0.06) (0.06) (0.02)

SAT Verbal -0.89 -0.91 0.01 1.15 1.15 0.00
(0.03) (0.03) (0.02) (0.06) (0.04) (0.05)

NCES Reading, 10th grade -0.35 -0.32 -0.02 1.04 0.99 0.05
(0.03) (0.03) (0.02) (0.04) (0.03) (0.03)

NCES Math, 10th grade -0.41 -0.41 0 2.22 1.79 0.43
(0.03) (0.03) (-) (0.08) (0.06) (0.05)

NCES Math, 12th grade -0.41 -0.41 0 2.11 1.89 0.23
(0.03) (0.03) (-) (0.08) (0.06) (0.05)

The table displays estimates of bias (in the left panel) and signal-to-noise ratios (in the right
panel). These correspond to µR

t and αt,j

σt,j
in equation (3). The NCES exams are used to identify

the technology of skill formation, but are not available to colleges when determining whom
to admit. Estimates of the proportion of variance in each measurement due to the latent factor
are provided in Table A-3 in Appendix A. WA refers to the population of white and Asian
students. SOURCE: (ELS 2002)

Table 6 presents estimates of the technology of skill formation. The parameter esti-
mates are similar for URMs and white and Asian students. Both have an autoregressive
parameter for knowledge approximately equal to one, indicating that knowledge does
not depreciate throughout high school. This suggests that it may be difficult for students
who enter high school with a low level of knowledge to catch up to their peers by the
time they apply to college. I also find that an additional ten hours of study time per week
increases knowledge by 0.08–0.09 sd. A URM student who studies 10 hours per week
will, all else equal, improve her skills by 0.27 sd between the end of 9th grade and the end
of high school. Studying may therefore deliver significant marginal returns for students
whose initial conditions place them on the cusp of gaining admission to college. Students
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Table 6: Technology of Skill Formation

URM White & Asian

Knowledge(-1) 1.03 1.05
(0.01) (0.00)

Study, 10 hours/wk 0.09 0.08
(0.01) (0.01)

Private School 0.05 0.02
(0.01) (0.01)

Free Lunch -0.11 -0.18
(0.03) (0.02)

Student Teacher Ratio 0.00 0.00
(0.00) (0.00)

Mother: High School -0.01 0.00
(0.02) (0.01)

Mother: Some College -0.02 -0.01
(0.01) (0.01)

Mother: Bachelors -0.03 -0.02
(0.02) (0.02)

Mother: Postgraduate -0.03 -0.02
(0.02) (0.02)

Constant 0.20 0.18
(0.03) (0.02)

The table displays estimates of parameters governing the technology of skill formation.
Study refers to the effect of studying 10 hours per week on next year’s skills. Free lunch is
measured on a scale from 0 to 1. High school dropout is the omitted education category.
More details on the technology are provided in section 3. SOURCE: (ELS 2002)

at poorer high schools, as indicated by the proportion of students qualifying for a free or
reduced-price lunch, accumulate less knowledge. The effect of class size on skill develop-
ment is insignificant. Attending a private school, either catholic or nondenominational,
has a positive effect on knowledge accumulation for URMs. Mother’s education has little
effect on value added, in contrast to its effect on initial knowledge.

It is possible to use the dynamic factor model to analyze the distribution of knowl-
edge at the end of high school. Figure 2 plots the densities of posterior knowledge means,
mi,12 = E[Ki,12 | Ω̃i,12], across students, grouped by whether the student took the SAT or
not. The figure shows that SAT-takers typically have much greater knowledge than non-
takers: The difference in means between the two groups is 1.15 sd. There are also very
few students with knowledge one sd above the mean who fail to take the SAT. While
these distributions are endogenous with respect to college admission policies, the large
skill differences measured in the data will make it difficult for most non-takers to out-
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Figure 2: Knowledge Distribution, 12th Grade

The figure shows the density of the mean of 12th grade knowledge, mi,12 = E[Ki,12 | Ω̃i,12], by SAT-
taking status. mi,12 has been standardized to have zero mean and unit variance. SOURCE: (ELS 2002)

compete SAT-takers to gain admission to college under any policy that aims to admit
knowledgeable students.

6.2 Estimated Preferences

Table 7 presents estimates of the preference parameters for students and colleges. The
fixed effects for each college are ordered in a way that is consistent with selective uni-
versities being more highly valued. Distaste for distance is minor at the matriculation
stage, although it will be significant at the application stage (Table 9). The coefficient on
Net Tuition is positive, indicating that there may be some quality differences between less
and more expensive colleges that cause matriculating students to prefer attending the lat-
ter.32 Students exhibit a strong preference for college completion. Comparison with the
fixed effects, U1, . . . , U6, reveals that college is highly valued because of the degree that it
confers rather than because of amenities unrelated to the degree.

Students dislike studying, but studying is less costly if they are female, attend private
school, or have higher ninth grade skills. SAT-taking is also costly but greater income and
logistical access make it less so. To put some of the numbers in Table 7 in perspective,
the disutility of studying ten hours a week for a student with ninth grade knowledge one
standard deviation above the mean is (−0.14 + 0.07 × 1) × 10 = −0.70. This is worth
0.70/3.50 = 0.20 of a college degree. This student would therefore study ten additional
hours a week if doing so increased her probability of attaining a college degree by 20% or
more.

32Net tuition, like all monetary variables in the paper, is expressed in hundreds of dollars per week.
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Table 7: Preference Parameters

Value Standard Error

Student Preferences for Universities

College 1, U1 0.12 0.13
College 2, U2 -0.96 0.18
College 3, U3 -1.09 0.24
College 4, U4 0.22 0.08
College 5, U5 -0.71 0.07
College 6, U6 -0.86 0.19
Portfolio Shock, Scale 1.08 0.02
Distance, Public -0.10 0.09
Distance, Private -0.07 0.40
Net Tuition 0.40 0.17
Completion 3.50 0.30

Student Preferences for Outside Option

Earnings Differential 0.14 0.17
Suburban 0.46 0.18
Rural 0.48 0.22

Student Preferences in High School

Hours, γH -0.14 0.04
Hours × Income, γInc

H 0.00 0.00
Hours × Female, γF

H 0.05 0.03
Hours × Priv, γPriv

H 0.05 0.03
Hours × Knowledge, γM9

H 0.07 0.01
SAT, γS -1.44 0.06
SAT × Access, γZ

S 0.08 0.07
SAT × Income, γInc

S 0.20 0.03

College Preferences

Preference for Knowledge, Tier 1 0.90 0.06
Preference for Knowledge, Tier 2 0.89 0.02
Preference for Knowledge, Tier 3 0.83 0.03
Preference for Knowledge, Tier 4 0.93 0.00
Preference for Knowledge, Tier 5 0.96 0.02
Preference for Knowledge, Tier 6 0.85 0.01

The table displays estimates of preference parameters of students and colleges in the
model. Net Tuition and Income are measured in hundreds of dollars per week. Dis-
tance is measured in hundreds of miles. Earnings Differential is the gender-specific
percent difference in average earnings between high school and college graduates in
the student’s county. More details are provided in section 3. SOURCE: (ELS 2002)
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Table 8: Admissions Thresholds

Raw Standardized

White & Asian URM White & Asian URM

Tier 1 2.50 1.81 1.07 0.54
Tier 2 1.43 0.86 0.24 -0.20
Tier 3 0.75 0.02 -0.29 -0.85
Tier 4 2.03 1.62 0.71 0.39
Tier 5 1.29 1.09 0.13 -0.03
Tier 6 0.47 -0.18 -0.51 -1.01

The table displays estimated admissions thresholds for each tier of college. Students
who apply to a school with an application signal that exceeds their demographic-specific
threshold are granted admission. Columns labeled Raw indicate the threshold in terms of
logKi,12, while in the columns labeled Standardized, the thresholds have been normalized
by subtracting the mean and dividing by the standard deviation of logKi,12. SOURCE:
(ELS 2002)

Private colleges value knowledge less and diversity more that equally selective public
colleges: Ten hundredths of top tier private universities’ utility is derived from the diver-
sity of its student body, while the corresponding fraction for top tier public universities
(tier 4) is seven out of one hundred. State flagship universities (Tier 5) place the lowest
weight on diversity. The weight placed on diversity causes a wedge to arise between the
two admissions thresholds at each college. Table 8 shows that these thresholds are lower
for URM than for white and Asian students within each college tier.

Table 9 shows estimates of the application cost parameters. Fixed costs – which vary
by income, mother’s education, distance, and a tier-specific constant – capture both mone-
tary and nonmonetary deterrents to applications. A single application to a tier one school
is over four times as costly as an application to a tier six school, all else equal. The signs
on income show that higher income students prefer elite schools and state flagships rel-
ative to schools in tiers 3 and 6. At the same time, the evidence in Table 9 suggests
that nonmonetary costs are more salient. Having a mother with a college degree dra-
matically reduces the fixed cost of applying to a tier one school. This effect, −1.07, is
greater than the effect of moving from the poorest to the richest household in the sample
(−0.06 × (9.62 − 0.24)) = −0.563. Distance also influences where students apply, and it
tends to be less salient at more selective schools. These parameter estimates are consis-
tent with the existence of both information frictions and biased beliefs, which have been
found to shape application choices (Hoxby and Avery 2012, Bleemer and Zafar 2018).
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Table 9: Application Cost Parameters

Fixed Cost Marginal Cost

Constant HH Income Mother’s Ed Distance Constant HH Income

Tier 1 3.96 -0.06 -1.07 0.30 0.17 -0.06
(0.16) (0.01) (0.10) (0.09) (0.39) (0.08)

Tier 2 2.58 -0.06 -0.78 0.46 1.21 -0.10
(0.05) (0.02) (0.10) (0.25) (0.05) (0.03)

Tier 3 2.04 0.03 -0.25 1.35 1.61 -0.04
(0.14) (0.03) (0.08) (0.42) (0.14) (0.04)

Tier 4 2.64 -0.07 -0.79 0.58 1.18 -0.07
(0.07) (0.01) (0.14) (0.09) (0.09) (0.02)

Tier 5 1.72 -0.04 -0.41 1.11 2.41 -0.16
(0.05) (0.02) (0.16) (0.18) (0.06) (0.03)

Tier 6 0.84 0.04 -0.03 0.25 0.84 -0.03
(0.06) (0.03) (0.25) (0.07) (0.04) (0.03)

The table displays estimates of parameters governing the cost of applying to college. Income
is measured in hundreds of dollars per week. Mother’s Ed is an indicator for whether an
individual’s mother has a bachelor’s degree. Distance is measured in hundreds of miles.
Fixed and marginal costs are school-specific. More details on application costs are provided
in section 3. SOURCE: (ELS 2002)

6.3 College Completion

Table 10 displays estimates of the college completion parameters. The estimates show
that greater knowledge at the time of matriculation increases completion probabilities at
all schools. Averaging across all individuals in the sample, the coefficients in Table 10
imply that increasing logKi,12 by one unit (the sd of logKi,12 is 1.28) would increase the
probability of completion by anywhere between 6.7 pp at tier 4 schools and 12.7 pp at tier
6 schools. I do not find evidence of complementarities between student knowledge and
college selectivity. Completion rates are actually higher for highly skilled students at less
selective schools (tier 6), although these differences are not significant.33

Only tier 6 schools have a statistically significant constant, indicating that completion
is lower at these schools after controlling for knowledge (Bound, Lovenheim, and Turner
2010). Although URMs are 11 pp less likely to complete college conditional on enrolling
(Table 2), there is no significant difference in completion rates by demographic after con-
trolling for knowledge and the college attended. I also find that having a college-educated

33The lack of complementarities between student quality and school selectivity in terms of degree attain-
ment within eight years is consistent with Dillon and Smith (2020), who find evidence of such complemen-
tarities only in college completion within four years but not within longer time horizons.
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Table 10: College Completion Model

Estimate Standard Error

Tier 1 -0.25 0.41
Tier 2 0.05 0.17
Tier 3 -0.15 0.10
Tier 4 0.11 0.23
Tier 5 -0.05 0.15
Tier 6 -0.35 0.07
logKi,12× Tier 1 0.28 0.13
logKi,12× Tier 2 0.25 0.07
logKi,12× Tier 3 0.26 0.06
logKi,12× Tier 4 0.18 0.09
logKi,12× Tier 5 0.25 0.07
logKi,12× Tier 6 0.34 0.04
URM -0.03 0.05
HH Income 0.02 0.01
Mother has college degree 0.07 0.04

The table displays parameters of the college completion model, equation (20).
The constant and slope with respect to knowledge, logKi,12, vary by college
tier. Income is measured in hundreds of dollars per week. More details on
college completion are provided in section 3. SOURCE: (ELS 2002)

mother has no effect on college completion and that family income is marginally signifi-
cant. The results suggest that, if URMs attended the same colleges and had similar skills
at the time of matriculation as white and Asian matriculants, the college completion gap
would disappear.

6.4 Model Fit

Table A-4 in Appendix A shows that the model successfully replicates many data mo-
ments. The model matches the proportions of students at each type of college, as well as
the overall percentage of students, 44%, attending any four-year university. The model
also closely replicates rates of college completion conditional on enrollment, both over-
all (68% in both the data and model simulations) and separately by demographic. The
model also reproduces the clear pattern of sorting to universities by SAT scores and by
household income that exists in the data.

The model matches hours spent studying quite well: 6.31 hours in the data versus
6.19 hours in model simulations. However, the model somewhat underpredicts study
time by URMs (5.87 hours in the data versus 5.23 hours in the model) and overpredicts it
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among white and Asian students (6.49 hours in the data versus 6.58 hours in the model).
The model matches SAT take-up overall, but slightly overpredicts take-up for URMs (by
5 pp). Put another way, by controlling for family income, exam access, and the chance
of admission to college, the model can explain two thirds (10

15
) of the 15 pp gap in SAT

take-up by race.

Figure 3 depicts patterns of sorting by knowledge across college tiers, by plotting den-
sities of logKi,12 for students attending each tier. The figure reinforces the patterns of
sorting by SAT scores seen in Table A-4, as there is a definite ordering to the peaks of
each density. The figure also reveals substantial overlap in the knowledge distribution
at all colleges, even between students who attend no college and those who attend elite
colleges. In the next section, I evaluate counterfactual policies that may send a new pool
of students to college. The overlap of logKi,12 across colleges provides reassurance that
the predictions of college completion in the next section have support in the data.

Figure 3: Latent Knowledge, by College Attended

The figure shows the simulated distribution of logKi,12 by college attended. Densities are computed
using 200 simulated data sets. SOURCE: (ELS 2002)
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7 Counterfactuals

This section simulates a ban on the SAT. Colleges rely on grades and the variables in Ωi,9

when determining whom to admit, while students respond by deciding where to apply
and how much to study. The choice of whether to take the SAT is removed from students’
choice set. Colleges optimally set admissions thresholds so that the expected demand for
university enrollment equals capacity. A second policy mandates all students take the
SAT. As before, students respond along the application and study margins, and colleges
respond by adjusting thresholds.

7.1 Main Findings

Table 11 shows that banning the SAT causes a small increase in URM enrollment of half
a percentage point, while mandating it causes a larger increase of 1.4 pp. These gains are
driven by increased URM enrollment at less selective schools (tiers 3 and 6), with URM
enrollment at selective and elite schools mostly declining under the ban. Both policies
allow the predominantly poor and nonwhite students who do not take the SAT in the
status quo to apply to college, but the increased application volume only translates into
admissions at less selective schools for two reasons. First, the difference in skills between
SAT-takers and non-takers is large (Figure 2), which means that non-takers can only out-
compete existing matriculants for admission at schools with low admissions thresholds
(Table 8). Second, URM applicants induced to apply by the SAT ban have lower knowl-
edge than similarly-induced white and Asian applicants. After banning the SAT, appli-
cations from URM (white and Asian) students increase by 31% (18%). As more students
apply, knowledge of the average applicant falls, with the mean of logKi,12 falling by 0.16

sd for URM applicants versus a 0.13 sd decline for white and Asian applicants.
Low-income enrollment fares better in the new admissions environments. The right

panel of Table 11 shows that banning the SAT and SAT-for-All both generate similar in-
creases in low-income enrollment of 2.8 pp, with nearly all of the gains again occurring at
less selective schools. Low-income enrollment increases by more than URM enrollment,
because URM non exam-takers are particularly disadvantaged: The mean of logKi,12 for
low-income URM non-takers is 1.10 sd below the sample average, while it is only 0.82

sd below average for low-income white and Asian non-takers. The most knowledgeable
non-takers (those with mi,12 in the top tercile) are 73% white or Asian.

Figure 4 shows that the two policies generate markedly different effects on college
sorting by knowledge. Eliminating the SAT renders the distributions of knowledge more
homogeneous across colleges, while mandating the SAT has the opposite effect. By giving
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Table 11: Access to College

URM Attendance Low-Income Attendance

Status Quo No SAT SAT-for-All Status Quo No SAT SAT-for-All

Tier 1 0.014 0.016 0.014 0.008 0.008 0.008
Tier 2 0.048 0.044 0.044 0.034 0.035 0.033
Tier 3 0.051 0.061 0.062 0.046 0.057 0.058
Tier 4 0.025 0.020 0.024 0.018 0.018 0.020
Tier 5 0.038 0.031 0.033 0.038 0.039 0.037
Tier 6 0.153 0.161 0.166 0.151 0.166 0.169
Any College 0.329 0.334 0.343 0.295 0.323 0.324

The table displays the rates of attendance for URM and low-income students at each college tier
under three separate policies: the status quo, a policy where the SAT is banned, and a policy in
which all students take the SAT and submit their scores with their applications. Low-income refers
to students whose families earn less than the median ($52,500 per year). Simulated moments are
computed using 200 simulated data sets. SOURCE: (ELS 2002)

Figure 4: Latent Knowledge Distribution, Counterfactuals

The figure shows the simulated distributions of logKi,12 by college attended under two counterfactual
policies. The first eliminates the SAT in college admissions, while the second mandates that every high
school student take the SAT and submit their scores when applying to college. Densities are computed
using 200 simulated data sets. SOURCE: (ELS 2002)

each college access to two high-quality signals in the SAT math and verbal exams, colleges
are better able to draw an inference on each applicant’s latent knowledge. This allows
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Table 12: Counterfactuals

Status Quo No SAT SAT-for-All

All URM WA All URM WA All URM WA

Complete College

Tier 1 0.763 0.705 0.776 0.736 0.650 0.759 0.767 0.700 0.782
Tier 2 0.763 0.701 0.779 0.757 0.694 0.773 0.774 0.721 0.788
Tier 3 0.640 0.565 0.666 0.640 0.568 0.666 0.649 0.582 0.673
Tier 4 0.766 0.730 0.773 0.759 0.714 0.766 0.770 0.733 0.777
Tier 5 0.728 0.683 0.737 0.725 0.668 0.734 0.739 0.702 0.745
Tier 6 0.599 0.510 0.628 0.612 0.521 0.642 0.621 0.540 0.649
All Schools 0.675 0.592 0.698 0.674 0.584 0.699 0.685 0.606 0.708

Yearly Household Income

Tier 1 110K 99K 113K 109K 95K 112K 108K 95K 111K
Tier 2 96K 83K 99K 94K 83K 97K 94K 80K 97K
Tier 3 74K 61K 79K 71K 58K 76K 71K 58K 76K
Tier 4 103K 91K 105K 102K 92K 104K 100K 88K 102K
Tier 5 92K 80K 94K 90K 80K 92K 90K 78K 92K
Tier 6 72K 57K 77K 70K 56K 74K 70K 55K 74K
No College 52K 41K 58K 54K 42K 60K 54K 42K 61K

Attend Any College 0.437 0.329 0.481 0.449 0.334 0.496 0.444 0.343 0.485
Hours Study 6.19 5.23 6.58 6.30 5.32 6.69 6.30 5.31 6.70
E[logKi,12]: Any 4-yr College 0.61 0.14 0.74 0.60 0.10 0.73 0.69 0.24 0.82
E[logKi,12]: No College -0.47 -0.83 -0.28 -0.49 -0.82 -0.31 -0.55 -0.91 -0.37

The table displays summary statistics under three separate policies: the status quo, a policy that
bans the SAT, and a policy in which all students take the SAT and submit their scores with their
applications. Simulated moments are computed using 200 simulated data sets. WA refers to the
population of white and Asian students. SOURCE: (ELS 2002)

more sought-after schools to better select highly-skilled applicants for admission, leading
to greater assortative matching.

Changes in assortative matching cause changes in college completion. Table 12 shows
that banning the SAT causes completion rates at tiers 1 and 4 to fall by as much as 2.7 pp.
Tier 6 schools instead experience higher graduation rates, as they enroll stronger students
who are turned away by more selective schools because of noisier application signals.
By contrast, the SAT-for-All policy increases completion at lower-ranked schools without
lowering it at elite schools. Rather than drawing students away from elite colleges, the
SAT-for-All policy enables all schools, particularly those in tiers 2, 3, 5, and 6, to identify
qualified students for admission among those who did not take the SAT and thus did not
apply to college in the status quo. College completion rises by 1 pp overall.

Elite private and public colleges (tiers 1 and 4) have the most to lose from banning
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the SAT. Average knowledge and college completion decline at these schools without
generating large increases in URM attendance. The increase in signal variance causes all
colleges to inadvertently reject skilled candidates, but less selective colleges are able to
enroll students rejected by higher tiers, while elite colleges have no higher tier to draw
from. Hence, they experience the largest declines in the skill of their student body.

The mean of knowledge for students attending any four-year college barely budges
when banning the SAT. This result may seem surprising: One might expect that the lower
signal quality provided by grades would lead to the admission of weaker students. The
next section explains that supply side responses by colleges in equilibrium forestall this
outcome.34

7.2 Model Mechanisms

Eliminating the SAT causes four changes in the model: a shift in the set of measure-
ments used to determine admission, endogenous applications, endogenous study deci-
sions by high school students, and reoptimization by capacity-constrained colleges. To
understand the quantitative importance of each of these elements, I simulate the model
five times, starting from the status quo and adding one element at a time until I arrive
at the full No-SAT counterfactual. Summary statistics for five major variables – URM
attendance, knowledge, household income, college completion, and total attendance –
under each simulation are presented in Table 13. The second column, labeled No Sat,
holds applications and study effort fixed and removes the SAT from among the set of
measurements used to determine admission. The third column allows for endogenous
applications, while the fourth column adds endogenous study responses. The final col-
umn incorporates colleges’ supply side responses in equilibrium.

A clear pattern emerges from the analysis. Knowledge and household income become
more equalized across colleges in the No SAT and No SAT + Endogenous Applications
simulations. The spread of logKi,12 between students at top tier colleges and those not
attending college falls by 0.51 sd. The percentage of URMs attending college rises dramat-
ically, from 32.9% to 42.3%. However, the introduction of endogenous effort raises sorting
by knowledge and household income. Supply side responses reinforce this stratification
and reduce URM enrollment, as marginal entrants are shut out of college by higher ad-

34Appendix I considers a ban on the SAT if the exam had been found to be biased against URM students
and schools do not account for it. The Kalman Filter subtracts off any bias in the SAT when predicting
students’ latent knowledge, which has the effect of making bias irrelevant for admissions decisions. This
would be problematic if Table 5 had found evidence of bias. The appendix instead assumes that universities
do not correct for bias and asks how biased the SAT would need to be for eliminating it to increase URM
enrollment by a specified amount.
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Table 13: Model Mechanisms

Status Quo No Sat + Endogenous Apps + Endogenous Study + Supply Side

URM Attendance

Tier 1 0.014 0.017 0.021 0.015 0.016
Tier 2 0.048 0.035 0.060 0.059 0.044
Tier 3 0.051 0.055 0.063 0.068 0.061
Tier 4 0.025 0.031 0.034 0.028 0.020
Tier 5 0.038 0.037 0.050 0.045 0.031
Tier 6 0.153 0.157 0.196 0.210 0.161
Any College 0.329 0.331 0.423 0.425 0.334

E[logKi,12]

Tier 1 1.41 1.03 0.92 1.20 1.20
Tier 2 0.79 0.70 0.58 0.67 0.77
Tier 3 0.38 0.28 0.27 0.29 0.38
Tier 4 1.15 0.83 0.78 0.99 1.03
Tier 5 0.76 0.61 0.55 0.64 0.73
Tier 6 0.31 0.27 0.20 0.22 0.39
No College -0.47 -0.37 -0.45 -0.52 -0.49

Yearly HH Income

Tier 1 110K 108K 101K 109K 109K
Tier 2 96K 92K 88K 91K 94K
Tier 3 74K 73K 69K 69K 71K
Tier 4 103K 93K 94K 100K 102K
Tier 5 92K 87K 85K 87K 90K
Tier 6 72K 70K 66K 66K 70K
No College 52K 55K 54K 53K 54K

Complete College

Tier 1 0.764 0.718 0.698 0.736 0.735
Tier 2 0.768 0.753 0.738 0.751 0.766
Tier 3 0.640 0.624 0.622 0.627 0.647
Tier 4 0.770 0.736 0.737 0.757 0.763
Tier 5 0.728 0.706 0.700 0.715 0.732
Tier 6 0.598 0.591 0.575 0.581 0.609
Any College 0.674 0.66 0.647 0.653 0.672

Total Attendance

Tier 1 0.023 0.027 0.029 0.023 0.023
Tier 2 0.068 0.063 0.078 0.078 0.068
Tier 3 0.057 0.052 0.065 0.071 0.057
Tier 4 0.045 0.048 0.054 0.048 0.045
Tier 5 0.067 0.066 0.078 0.078 0.067
Tier 6 0.178 0.172 0.210 0.227 0.178
Any College 0.437 0.428 0.515 0.525 0.437

Each column in the table presents moments from a different simulation. The leftmost column simulates
the status quo policy. The second column removes the SAT from admissions but holds applications and
study time fixed. The third column lets applications respond endogenously. The fourth column lets study
time respond endogenously, and the final column imposes equilibrium in the college market. Simulated
moments are computed using 200 simulated data sets. SOURCE: (ELS 2002)
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missions standards. The last line in the table shows how, in the absence of the capacity
constraints imposed in equilibrium, college attendance would be 8.8 pp higher.

The reason why endogenous effort increases assortative matching in partial equilib-
rium is subtle. When the SAT is eliminated, average study time increases from 6.19 to 6.30
hours a week. This increase in average effort masks two countervailing changes: Students
who did not attend college in the status quo increase their study hours from 5.28 to 5.62
hours per week. But, the reduction in signal quality arising from the SAT’s elimination
causes those formerly attending college in the status quo to reduce their hours worked,
from 7.36 to 7.17 hours. Reduction in study hours pulls in the right tail of logKi,12, which
explains why enrollment in Tier 1 colleges falls between columns 3 and 4 of Table 13.
Lower-skilled and lower-income students originally attending elite public and private
colleges narrowly lose out on admission because of the reduction in study effort, and
students with higher skills and incomes remain.

When college sorting by knowledge changes, so do rates of college completion. Ban-
ning the SAT and allowing for endogenous applications reduce completion at all colleges
by up to 6.2 pp. Adding endogenous effort and the supply side instead raises comple-
tion. In the full equilibrium without the SAT, elite private colleges have lower rates of
completion, because noisier application signals cause them to lose out on some highly-
skilled candidates, who then enroll in less selective universities. This, together with the
admission of some strong students who do not take the SAT in the status quo, causes
graduation rates at public satellite colleges (tier 6) to rise.

The trend moving from left to right in Table 13 of decreasing and then increasing
stratification suggests that a lack of income at the application margin does not pose a pro-
hibitive barrier to college access. The model allows the cost of application to vary with
family income, but allowing for endogenous applications actually reduces stratification
by income. Instead, unequal pre-college human capital investment generates a distribu-
tion of cognitive skills that results in students attending markedly different colleges based
on their income.35 Restrictive supply at four-year colleges exacerbates this trend.

7.3 Early Investments in Non SAT-Takers

Figure 2, which documents large skill differences between SAT-takers and non-takers,
suggests that the effect of banning the SAT on URM enrollment depends on whether
there is a sizable share of strong URM applicants who do not take the SAT but who would

35Cunha and Heckman (2007) emphasize how skill differences that open up early in life can be remedi-
ated by early and sustained investments. Lochner and Monge-Naranjo (2011) show how credit constraints
prevent low-income households from investing in their children as much as they would like.
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Table 14: No SAT Policy with Skill Investments in non SAT-Taking URMs

Status Quo No SAT

Attendance E[logKi,12] Complete Attendance E[logKi,12] Complete

Tier 1 0.014 0.965 0.705 0.018 0.733 0.666
Tier 2 0.048 0.374 0.701 0.053 0.337 0.704
Tier 3 0.051 -0.077 0.565 0.072 -0.040 0.572
Tier 4 0.025 0.804 0.730 0.026 0.732 0.718
Tier 5 0.038 0.472 0.683 0.040 0.426 0.674
Tier 6 0.153 -0.136 0.510 0.190 0.026 0.545
Any College 0.329 0.138 0.592 0.399 0.174 0.601

The table displays attendance rates, average knowledge, and college completion rates for URM stu-
dents at each college tier under the status quo and No-SAT policies in a hypothetical scenario in which
logKi,9 for URM non SAT-takers is raised by 0.705 sd. Details regarding the scenario are provided in
the text. Simulated moments are computed using 200 simulated data sets. SOURCE: (ELS 2002)

apply to college if an SAT score were no longer required. To investigate this, I simulate
a policy that eliminates the SAT, but I raise logKi,9 for every URM student who does not
take the exam by 0.705 sd so that their average knowledge in the ninth grade is level
with typical white and Asian students who take the SAT.36 Table 14 shows statistics on
URM attendance, knowledge, and college completion when banning the SAT under this
hypothetical scenario. The fraction of URMs attending any four-year college rises by
nearly 7 pp, suggesting that if there were a large population of URM students with high
skills who failed to take the SAT, then banning the exam could increase access to college
for these students. However, the loss of information caused by banning the SAT in this
setting still generates disparate effects across colleges, with elite schools enrolling less
skilled students and less selective colleges enrolling stronger students.37

8 Conclusion

This paper has shown that when colleges stop using the SAT, they must focus more
on other criteria, and this has immediate consequences for who attends college (hold-
ing applications fixed) and further affects who applies to college and how well-prepared

36While large, 0.705 sd is the average treatment effect on math test scores after one year’s attendance in
Boston charter schools estimated in Walters (2018).

37Appendix I simulates additional policies and economic environments including SAT-Optional admis-
sions, a ban on affirmative action (AA), and an evaluation of an SAT ban if the exam had been found to
be biased against URMs. Banning AA leads to a large decrease in URM enrollment of 6.4 pp, but neither
an SAT ban nor SAT-for-All can counteract this drop. Both policies, however, can maintain low-income
enrollment at pre-AA levels.
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they are. Four mechanisms – the shift towards alternative admissions criteria, endoge-
nous applications, endogenous human capital investment, and supply side responses by
capacity-constrained colleges – are quantitatively important in shaping patterns of sorting
to college. I find that endogenous human capital investment and supply side responses
by colleges offset the initial benefit of letting greater numbers of students apply to college,
leading to little overall change in URM enrollment after eliminating the SAT.

This paper has documented large skill differences between SAT-takers and non-takers
and little evidence that the SAT is biased against URM students. This suggests that the
number of non-takers who could out-compete existing SAT-takers for admission when
SAT requirements are lifted is limited. Reducing admissions thresholds for disadvan-
taged applicants would result in greater diversity, although such a move could create real
economic costs. Estimates from the model reveal that completion at all schools depends
heavily on a student’s knowledge at the time of matriculation. Accepting less skilled
students may lower rates of completion.

There are several important extensions of this research. This paper has assumed that
colleges have preferences over racial diversity and a single latent variable, which I have
referred to as knowledge. These preferences can be extended to multiple skills and ad-
ditional demographic groups. Preliminary evidence from Appendix K suggests that a
two-skill model with noncognitive skills generates similar conclusions as the one-skill
model regarding the bias and informativeness of the SAT and grades. Still, this does not
rule out that other forms of skill that are not well-measured in the ELS 2002 may matter
for college admissions and completion.

This paper has estimated universities’ preferences for URM students, but it is straight-
forward to extend the model to include preferences for low-income students or interac-
tions between race and income. This framework will likely prove useful as universities
seek to find a way forward after the Supreme Court’s decision in June 2023 to ban affir-
mative action on the basis of race (Students for Fair Admissions, Inc. v. President and
Fellows of Harvard College, 600 U. S. 2023). University leaders and policymakers who
wish to diversify access to college may wish to follow this paper’s example and consider
the properties of the measurements that will replace the SAT and how admissions criteria
influence the potentially endogenous distribution of skills among likely applicants.
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Appendices

A Additional Tables and Figures

Figure A-1: SAT and ACT Testing Dates per School

The figure shows the number of dates reserved for SAT or ACT examinations during the spring of 2003
at schools in the ELS 2002. SOURCES: College Board, ACT, Inc., and U.S. Department of Education,
National Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002), “Base Year
through Second Follow-up, 2002-2006.”
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Figure A-2: Type of College Attended among College-Goers

The figure shows the fraction of all college students of each demographic group that are enrolled at each
college tier. The grouping of colleges into tiers is described in section 3.7. SOURCE: (ELS 2002)

Table A-1: Effect of Testing Availability on Exam-Taking and Applications

Take SAT Apply to College

Testing Dates 0.055 0.056 0.042 0.057 0.059 0.047
(0.016) (0.016) (0.017) (0.015) (0.015) (0.015)

School Type Yes Yes Yes Yes Yes Yes
School Geography Yes Yes Yes Yes Yes Yes
School Size Yes Yes Yes Yes Yes Yes
Local Poverty Rate No Yes Yes No Yes Yes
Mother’s Education No No Yes No No Yes
N 9910 9910 9910 9910 9910 9910

The table displays the results of logit regressions of binary indicators for taking
the SAT and applying to college on the number of SAT testing dates in one’s
own school during spring of the junior year of high school. Controls for the type
of school, school geography (urban, rural, or suburban), enrollment, district
level poverty rates, and mother’s education (5 categories) are also included.
SOURCE: (ELS 2002)
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Table A-2: Effect of Distance on Applications

Apply to College
Private Public

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 Tier 6

Distance : 50-150 miles -0.0121∗∗∗ -0.0156∗∗∗ -0.0122∗∗∗ -0.0479∗∗∗ -0.0686∗∗∗ -0.0645∗∗∗

(0.0016) (0.0009) (0.0006) (0.0042) (0.0039 (0.0020)
Distance : 150 - 250 miles -0.0155∗∗∗ -0.0203∗∗∗ -0.0145∗∗∗ -0.0735∗∗∗ -0.0942∗∗∗ -0.0773∗∗∗

(0.0016) (0.0009) (0.0006) (0.0042) (0.0039) (0.0020)
Distance : 250 - 500 miles -0.0179∗∗∗ -0.0221∗∗∗ -0.0152∗∗∗ -0.0800∗∗∗ -0.1034∗∗∗ -0.0807∗∗∗

(0.0016) (0.0009) (0.0006) (0.0042) (0.0039 (0.0020)
Distance : over 500 miles -0.0199∗∗∗ -0.0230∗∗∗ -0.0153∗∗∗ -0.0893∗∗∗ -0.1056∗∗∗ -0.0817∗∗∗

(0.0016) (0.0009) (0.0006) (0.0043) (0.0039) (0.0020)

N 9910 9910 9910 9910 9910 9910
Num Schools 60 270 480 40 80 380
Individual FEs Yes Yes Yes Yes Yes Yes
Clustered SEs Individual Individual Individual Individual Individual Individual

The table shows the coefficients from linear probability models of application decisions on distance to col-
lege. The unit of observation is an individual-college. All four-year public and private non-profit colleges
are included. Distance is calculated from the centroid of the individual’s home census block while in high
school to the latitude and longitude of each college in IPEDs. Each regression includes individual fixed ef-
fects and controls for tuition, acceptance rates, and interactions between acceptance rates and an individual’s
performance on the 12th grade NCES math exam. SOURCE: (ELS 2002)

Table A-3: Proportion of Variance Due to Signal

URM White & Asian Difference

GPA 9 0.285 0.417 -0.132
GPA 10 0.267 0.397 -0.130
GPA 11 0.211 0.319 -0.108
GPA 12 0.134 0.202 -0.068

SAT Math 0.687 0.735 -0.048
SAT Verbal 0.546 0.538 0.008

NCES10 Read 0.495 0.464 0.031
NCES10 Math 0.818 0.739 0.079
NCES12 Math 0.803 0.758 0.045

The table displays estimates of the proportion of variance of each measurement due to the signal
for URM and white and Asian students. For each individual, the proportion of variance coming

from signal j is given by αR
t,j

2
var(logKi,t)

αR
t,j

2var(logKi,t)+σR
t,j

2 for R = URM,WA. The individual-specific pro-

portions are then averaged for the URM and WA populations to create the numbers in the table.
SOURCE: (ELS 2002)
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Table A-4: Model Fit

Data Model

All URM WA All URM WA

Fraction Attending

Tier 1 School 0.023 0.015 0.027 0.023 0.014 0.026
Tier 2 School 0.069 0.036 0.082 0.068 0.048 0.075
Tier 3 School 0.057 0.053 0.058 0.057 0.051 0.059
Tier 4 School 0.045 0.027 0.052 0.045 0.025 0.053
Tier 5 School 0.069 0.035 0.083 0.067 0.038 0.079
Tier 6 School 0.178 0.161 0.185 0.178 0.153 0.188
Any College 0.441 0.327 0.487 0.437 0.329 0.481

SAT Math Score

Tier 1 1.30 0.83 1.41 1.11 0.57 1.24
Tier 2 0.51 0.21 0.56 0.44 -0.01 0.56
Tier 3 -0.12 -0.60 0.05 0.03 -0.43 0.19
Tier 4 0.81 0.40 0.90 0.84 0.41 0.92
Tier 5 0.42 0.09 0.48 0.42 0.09 0.48
Tier 6 -0.10 -0.51 0.05 -0.04 -0.47 0.10
No College -0.54 -0.92 -0.38 -0.87 -1.19 -0.72

SAT Verbal Score

Tier 1 1.34 0.96 1.42 1.01 0.54 1.12
Tier 2 0.62 0.41 0.66 0.42 0.01 0.52
Tier 3 -0.05 -0.42 0.09 0.04 -0.38 0.19
Tier 4 0.74 0.35 0.83 0.77 0.41 0.84
Tier 5 0.38 0.04 0.43 0.39 0.11 0.44
Tier 6 -0.09 -0.48 0.05 -0.02 -0.42 0.11
No College -0.51 -0.86 -0.37 -0.77 -1.09 -0.62

Yearly Household Income

Tier 1 107 78 114 110 99 113
Tier 2 95 82 97 96 83 99
Tier 3 73 55 79 74 61 79
Tier 4 98 87 100 103 91 105
Tier 5 88 67 92 92 80 94
Tier 6 70 57 75 72 57 77
No College 54 43 60 52 41 58

Complete College 0.676 0.587 0.699 0.675 0.592 0.698
Hours Study 6.31 5.87 6.49 6.19 5.23 6.58
Take SAT 0.75 0.64 0.79 0.76 0.69 0.79

The table compares moments in the data with their model counterparts by
simulating the model according to the estimated parameters. Simulated
moments are computed using 200 simulated data sets. WA refers to the
population of white and Asian students. SAT scores are normalized by
the sample mean and standard deviation in the data. Households income
is measured in thousands of dollars. SOURCE: (ELS 2002)
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Table A-5: URM Access to College by Income

Status Quo No SAT SAT-for-All

Low Inc High Inc Low Inc High Inc Low Inc High Inc

Tier 1 0.003 0.011 0.004 0.012 0.004 0.011
Tier 2 0.016 0.032 0.015 0.029 0.016 0.028
Tier 3 0.026 0.025 0.033 0.028 0.034 0.028
Tier 4 0.007 0.018 0.006 0.015 0.007 0.017
Tier 5 0.014 0.024 0.011 0.019 0.013 0.020
Tier 6 0.084 0.069 0.091 0.070 0.095 0.071
Any College 0.150 0.179 0.160 0.174 0.168 0.175

The table displays the rates of attendance for low-income and high-income
URM students at each college tier under three separate policies: the status
quo, a policy where the SAT is banned, and a policy in which all students
take the SAT and submit their scores with their applications. Low-income
refers to students whose families earn less than the median ($52,500 per
year). High-income families earn more than the median. Simulated mo-
ments are computed using 200 simulated data sets. SOURCE: (ELS 2002)

Table A-6: White and Asian Access to College by Income

Status Quo No SAT SAT-for-All

Low Inc High Inc Low Inc High Inc Low Inc High Inc

Tier 1 0.004 0.023 0.004 0.021 0.004 0.022
Tier 2 0.016 0.059 0.017 0.058 0.016 0.053
Tier 3 0.020 0.039 0.025 0.044 0.024 0.044
Tier 4 0.009 0.044 0.010 0.043 0.010 0.042
Tier 5 0.019 0.059 0.021 0.059 0.019 0.055
Tier 6 0.067 0.122 0.073 0.121 0.074 0.122
Any College 0.135 0.346 0.150 0.346 0.147 0.338

The table displays the rates of attendance for low-income and high-income
white and Asian students at each college tier under three separate policies:
the status quo, a policy where the SAT is banned, and a policy in which all
students take the SAT and submit their scores with their applications. Low-
income refers to students whose families earn less than the median ($52,500
per year). High-income families earn more than the median. Simulated
moments are computed using 200 simulated data sets. SOURCE: (ELS 2002)
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B Sample Selection Criteria

Of the 16,200 students who were initially sampled in the ELS 2002, 12,880 responded in
both the base year and the first follow-up survey in 2004. The most common reasons
for exclusion are nonresponse (12.05% of the sample), dropping out of high school be-
tween 2002 and 2004 (3.76% of the sample), and graduating early (2.43% of the sample).
Other, infrequent, reasons include being out of the country, language difficulties making
the survey impossible, and death. 370 students lack information on the amount of time
they spend studying. A further 2,370 students either lack information on GPA, school
characteristics, or geocode data. 610 individuals lack an SAT score despite applying to
colleges that required the exam. Finally, I exclude a small number of individuals (< 10)
with extremely low grades and SAT scores who are admitted to elite colleges, possibly
because of athletics. These students cause the model likelihood function to return infinite
values for large regions of the parameter space. These exclusions result in a sample of
9,910 observations.

During the second follow-up survey in 2006, students report the full list of colleges
they applied to, where they were admitted, and where they first matriculated. To address
concerns regarding whether use of this self-reported measure may result in biased admis-
sions probabilities, I compare admission probabilities derived from the survey responses
in the ELS 2002 to acceptance rates in the Integrated Postsecondary Education Data Sys-
tem (IPEDS) for the same year (2004/05 cohort) in Table B-1. The table disaggregates
admission probabilities by type (private non-profit vs public) and Barron’s Selectivity
Ranking. The IPEDs statistics are weighted by the enrollment of the institution. The ta-
ble shows that admissions rates are somewhat lower in IPEDS than in the ELS 2002. The
differences, of eleven to thirteen percentage points (pp) for private colleges, and between
six and eight pp for public colleges, indicate that students in the ELS 2002 selectively
under-report applications to colleges at which they are rejected. The implication for the
empirical results is that the cost of applying to college, which is identified by the number
of applications to college, could be over-estimated in the model. This suggests that model
forecasts of application growth resulting from policy changes may be a lower bound for
the true application growth.

C Initial Conditions and Kalman Filter

The first observed measure of knowledge for students in the ELS 2002 is in the ninth
grade, and it is unlikely that all students begin high school on a level playing field. Pro-
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Table B-1: Admission Rates, IPEDS and ELS 2002

Rate of Admission

Type Tier Barron’s Rank IPEDS ELS 2002

Private 1 1 0.29 0.40
2 2 and 3 0.66 0.79
3 4, 5 and 6 0.72 0.84

Public 4 1 and 2 0.53 0.61
5 3 0.69 0.75
6 4, 5, and 6 0.72 0.80

The table compares rates of admission at six college tiers based on self-reported
application and admission information in the ELS 2002 together with data from
IPEDs for the same set of schools. IPEDS admission rates for each tier are weighted
by the enrollment at each school within the tier. SOURCES: IPEDS and National
Center for Education Statistics, Education Longitudinal Study of 2002 (ELS:2002),
“Base Year through Second Follow-up, 2002-2006.”

vided that the skill accumulation equation in (1) holds in middle and elementary school,
one can use backwards substitution to write knowledge in the ninth grade as a function
of an entire history of study decisions and educational inputs as follows:

logKi,9 = f(hi,1, . . . , hi,9, Ii,1, . . . , Ii,9, Ki,0) .

This equation means that even if children were born with equal endowments, Ki,0, a his-
tory of unequal investments would generate differences in the distribution of Ki,9. While
the ELS 2002 does not record the entire history of inputs and study decisions prior to high
school, I do allow the distribution of Ki,9 to vary according to a set of predetermined co-
variates, Wi, that are likely to be correlated with prior investments. Hence, rather than
imposing the normalization that logKi,9 ∼ N(0, σ2

k), as is common in the literature es-
timating dynamic factor models, I instead allow the distribution of initial conditions to
vary by Wi as follows:(

logKi,9

yR
i,9

)
∼ N
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))
,

where the variance of ninth grade knowledge is given by σ2
k(Wi) = exp(W′

ib) and ΣR
9 =

E(εRi,9εR
′

i,9).

As in the main text, let URMi ∈ {0, 1} indicate whether a student belongs to an under-
represented minority, and define the initial information set by

Ωi,9 := {URMi,Wi,yi,9, {Ii,k}12k=10} ,
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and subsequent updates as Ωi,t := {Ωi,t−1,yi,t, hi,t}. The Kalman Filter yields the following
update for knowledge after observing the initial conditions and ninth grade GPA:

logKi,9 | Ωi,9 ∼ N(mi,9, Pi,9) ,

where

mi,9 := σ2
k(Wi)α

R′

9 F−1
i,9

(
yi,9 − (µR

9 +αR
9 W

′
ia)
)
,

Pi,9 := σ2
k(Wi)− σ2

k(Wi)α
R′

9 F−1
i,9α

R
9 σ

2
k(Wi) ,

Fi,9 := σ2
k(Wi)α

R
9 α

R′

9 +ΣR
9 .

For an individual with information set Ωi,t−1 who chooses to study hi,t hours, the predic-
tion for period t knowledge is

logKi,t | Ωi,t−1, hi,t ∼ N(mi,t|t−1, Pi,t|t−1) ,

mi,t|t−1 := γK,Rmi,t−1 + βH,Rhi,t + I′i,tβ
I,R ,

Pi,t|t−1 := γK,R2
Pi,t−1 ,

and the subsequent update for period t knowledge is

logKi,t | Ωi,t ∼ N(mi,t, Pi,t) ,

mi,t := Pi,t|t−1α
R′

t F−1
i,t

(
yi,t − (µR

t +αR
t mi,t|t−1)

)
,

Pi,t := Pi,t|t−1 − Pi,t|t−1α
R′

t F−1
i,t α

R
t Pi,t|t−1 ,

Fi,t := αR
t Pi,t|t−1α

R′

t +ΣR
t .

D Financial Aid

The model allows financial aid to shape matriculation through its contribution to Net
Tuition in equation (8). Any study of college attendance must deal with the fact that aid
is unobserved at schools to which the student does not apply. Another challenge is that
the ELS 2002 contains data on federal financial aid, but not state or institutional aid.

I address this problem of partially observed data by training a random forest on data
from a more recent NCES educational survey, the High School Longitudinal Study of 2009
(HSLS 2009). The HSLS 2009 is a longitudinal survey of the transition from high school to
college with many of the same measurements as the ELS 2002 (GPA, SAT scores, college
attended), but, unlike the ELS 2002, the HSLS 2009 records federal, state, and institutional
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financial aid awarded to each student.38 I train a random forest on the HSLS 2009 using
five-fold cross validation to predict the proportion of tuition covered by financial aid at
each college tier. I then develop a crosswalk (available upon request) between the two
data sets and use the random forest to predict the proportion of tuition that would be
covered by financial aid for each individual in the ELS 2002 at each college tier. I work
with proportions rather than aid dollars to control for the growth in college tuition be-
tween the 2002 and 2009 cohorts. Aidi,c is therefore the predicted proportion of tuition
at school c that would be covered by financial aid awarded to individual i. I then com-
pute predicted aid dollars for students in the ELS 2002 by multiplying the predicted aid
proportion by the dollar amount of tuition for their reference college in 2004, when these
students are matriculating to college. Net tuition is just the difference between posted
tuition and predicted aid dollars: NetTuitioni,c = Tuition2004

i,c (1 − Aidi,c). Net tuition is
measured in hundreds of dollars per week (divide by 52× 100).39

The random forest uses 1000 trees, samples six variables at each node, and sets the
minimum node size to six. These parameters were selected to optimize the out-of-sample
predictions across the six prediction models (one for each tier of colleges). The out-of-bag
R2 for these prediction models are 0.306, 0.151, 0.095, 0.195, 0.10, and 0.071.

E Knowledge Predicts Admission

This paper has modeled each student’s probability of admission to college as a function
of her demographic and her knowledge at the time of application, logKi,12, as filtered
through the observable measurements in Ωi,12. This section shows that knowledge filtered
in this way is highly predictive of admission.

Figures E-1 through E-6 provide estimates of nonparametric local linear regressions of
admission to college as a function of the mean of each student’s twelfth grade knowledge
as derived from the model, E[logKi,12 | Ωi,12]. The regressions are all estimated using
an Epanechnikov kernel and a bandwidth of one. The nonparametric functions are plot-
ted only over the support of E[logKi,12 | Ωi,12] among applicants to each school in the
ELS 2002. The figures show that admission probabilities are increasing in twelfth grade
knowledge at all schools. While many colleges observe characteristics that are not in the
ELS 2002, such as writing samples and teacher recommendations, the nonparametric re-

38The main disadvantage of the HSLS 2009 relative to the ELS 2002 and the reason it was not used for
this study is that it does not record each student’s entire admissions and acceptance portfolios.

39The model gives students perfect foresight over financial aid. If students instead had to form expec-
tations over aid, their applications would likely appear more random and less targeted to their preferred
school.
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gressions provide reassurance that the measurements observed in the data are still highly
predictive of admission.

Figure E-1: Probability of Admission, Elite Private Colleges

Figure E-2: Probability of Admission, Highly Selective Private Colleges
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Figure E-3: Probability of Admission, Less Selective Private Colleges

Figure E-4: Probability of Admission, Elite Public Colleges
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Figure E-5: Probability of Admission, Typical State Flagships

Figure E-6: Probability of Admission, Typical State Satellites
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F Alternative Normalizations and Specifications for the Dy-

namic Factor Model

The identification of dynamic factor models requires normalizations. In this paper, I ex-
ploit the fact that the tenth and twelfth grade NCES math exams are scored on the same
vertical scale to reduce the number of necessary normalizations. However, as I explain
in section 4.1, since both the parameters of the measurement system and the mean of the
initial conditions vary by whether a student belongs to an under-represented minority, an
additional normalization is required. The approach I adopt in this paper is to impose that
the NCES math exams have the same constants in equation (3), namely that µURM

10,j = µWA
10,j

and µURM
12,j = µWA

12,j for j equal to the NCES math exam. In this section, I explore whether
the inferences drawn from the dynamic factor model are robust to alternative normaliza-
tions and alternative specifications for the technology of skill formation.

Table F-1 presents estimates from a dynamic factor model that instead imposes the
normalization that GPA in the ninth grade has the same constant for URM students as
it does for white and Asian students, µURM

9,j = µWA
9,j for j equal to the ninth grade GPA.

The NCES math exams are now permitted to have different constants by URM status.
The estimates of bias in the left panel are qualitatively and quantitavely very similar to
the main specification. Despite using a different normalization, I estimate that neither of
the SAT exams, nor any of the NCES exams are biased. Similar to the main specification,
the only evidence of bias is in GPA in the twelfth grade, which appears to be biased
against URMs. The estimates of signal-to-noise ratios in the right panel of Table F-1 are
qualitatively similar to those from the main specification. I estimate that GPAs are less
informative for URMs during each year of high school, and I find that the standardized
exams are typically more informative for URMs than for white and Asian students.

The model in the main part of the paper specificies a deterministic skill technology
(equation 1). I now explore whether the results are robust to the inclusion of a shock
in this equation. Because of the inclusion of the shock, the identification argument in
section 4.1 breaks down, and additional normalizations are needed. Since there is only
one measurement in grade nine, it is not possible to separately identify the variance of
the technology shock, the variance of the measurement shock, and the factor loading, so
I normalize the factor loading on GPA in the ninth grade to equal the factor loading on
GPA in the tenth grade, αR

9,j = αR
10,j for j = GPA and R = URM,WA. For the same

reason, I normalize the factor loadings on eleventh and twelfth grade GPAs to be the
same, αR

11,j = αR
12,j , again for j = GPA and R = URM,WA.

Table F-2 presents estimates from this dynamic factor model. The estimated variance
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Table F-1: Bias and Signal-to-Noise Ratios

µR
t

αt,j

σt,j

URM WA Difference URM WA Difference

GPA, 9th grade -0.14 -0.14 0 0.75 0.90 -0.15
(0.02) (0.02) (-) (0.03) (0.03) (0.03)

GPA, 10th grade -0.26 -0.26 0.00 0.70 0.86 -0.16
(0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

GPA, 11th grade 11 -0.38 -0.36 -0.02 0.60 0.73 -0.13
(0.03) (0.02) (0.03) (0.03) (0.02) (0.02)

GPA, 12th grade 12 -0.49 -0.37 -0.12 0.46 0.53 -0.08
(0.03) (0.02) (0.05) (0.01) (0.02) (0.02)

SAT Math -0.91 -1.02 0.11 1.72 1.78 -0.06
(0.04) (0.03) (0.03) (0.08) (0.06) (0.07)

SAT Verbal -0.83 -0.89 0.06 1.28 1.15 0.13
(0.04) (0.03) (0.03) (0.08) (0.04) (0.07)

NCES Reading, 10th grade -0.28 -0.31 0.03 1.15 0.99 0.16
(0.04) (0.03) (0.03) (0.05) (0.03) (0.04)

NCES Math, 10th grade -0.33 -0.39 0.06 2.46 1.80 0.66
(0.04) (0.03) (0.03) (0.13) (0.06) (0.01)

NCES Math, 12th grade -0.33 -0.39 0.06 2.34 1.89 0.45
(0.04) (0.03) (0.03) (0.09) (0.06) (0.06)

The table displays estimates of bias (in the left panel) and signal-to-noise ratios (in the
right panel) when ninth grade GPA is normalized to have no bias. These correspond to
µR

t and αt,j

σt,j
in equation (3). SOURCE: (ELS 2002)

of the shock is not statistically different from zero, and the rest of the parameters are
nearly identical to the main specification in the paper (Table 6). The results presented
here should alleviate concern that the use of a deterministic skill formation equation,
which aids in identification, significantly biases the findings in the main text.

G Solving the Model

I use Bayes’ rule to compute diversity at each school:

λc
URM :=P(URMi = 1 | Attendi,c = 1) ,

=
P(Attendi,c = 1 | URMi = 1)λURM

P(Attendi,c = 1)
,

where λURM is the population fraction of under-represented minorities (which I estimate
by the fraction of students in the ELS 2002 that are URMs).
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Table F-2: Technology of Skill Formation

URM White & Asian

Knowledge(-1) 1.03 1.04
(0.00) (0.02)

Study, 10 hours/wk 0.09 0.08
(0.01) (0.01)

Private School 0.05 0.02
(0.01) (0.01)

Free Lunch -0.11 -0.17
(0.02) (0.03)

Student Teacher Ratio 0.00 0.00
(0.00) (0.00)

Mother: High School -0.01 0.00
(0.01) (0.02)

Mother: Some College -0.02 -0.01
(0.01) (0.01)

Mother: Bachelors -0.03 -0.02
(0.02) (0.02)

Mother: Postgraduate -0.03 -0.02
(0.02) (0.02)

Constant 0.20 0.18
(0.02) (0.03)

σ2
k 0.00 0.00

(0.38) (0.38)

The table displays estimates of parameters of the technology of skill formation
with a stochastic shock. Study refers to the effect of studying 10 hours per week
on next year’s skills. Free lunch is measured on a scale from 0 to 1. High school
dropout is the omitted education category. SOURCE: (ELS 2002)

G.1 Solving the Model in Counterfactual Simulations

In counterfactual simulations, the distribution of skills and the pattern of college appli-
cations may differ from the data, so they cannot be conditioned on, but rather must be
integrated over when solving for the equilibrium thresholds. In these simulations, the
probability of attending school c is

P(Attendi,c = 1) =

∫
P(Attendi,c = 1 | Ωi,9)dF (Ωi,9) ,

=
1

N

∑
i

P(Attendi,c = 1 | Ωi,9) ,

=
1

N

∑
i

∑
a

∫
P(Attendi,c = 1 | Ωi,12)dF (Ωi,12 | a,Ωi,9)p(a | Ωi,9) . (G-1)

The innermost integral requires integrating P(Attendi,c = 1 | Ωi,12) only over the dis-
tribution of (mi,12, Pi,12), which govern admissions chances for individual i, so f(Ωi,12 |
a,Ωi,9) simplifies to f(mi,12, Pi,12 | a,Ωi,9). Note that Pi,12, the conditional variance of
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logKi,12, is deterministic conditional on the choice, a, so f(mi,12, Pi,12 | a,Ωi,9) = f(mi,12 |
a,Ωi,9)δPi,12(a), where δPi,12(a) is the Dirac delta function that places infinite mass on the
point Pi,12(a).

The expression in (G-1) shows that expected attendance at college c can be calculated
as the average across all students of the integral of the probability of attending college
conditional on the state variables in the 12th grade, where the integral is over (i) the single
continuous state variable mi,12 conditional on choices and initial conditions (a,Ωi,9) and
(ii) the choices (a) the student made in high school whose Logit probabilities are given by
the solution to (19).40

The probability of attending college c conditional on the state variables in the 12th
grade can be expressed as follows:

P(Attendi,c = 1 |Ωi,12) = P(Matriculatei,c = 1 | Admiti,c = 1, Applyi,c = 1,Ωi,12)×

P(Admiti,c = 1 | Applyi,c = 1,Ωi,12)× P(Applyi,c = 1 | Ωi,12)

=
∑
B⊆A

P(Ci = C|B,Ωi,12)×
∑

A∈A(SATi(a))

P(B|A,Ωi,12)P(A | Ωi,12) ,

where P(Ci = c|B,Ωi,12) is given by equation (11), P(B|A,Ωi,12) is given by equation
(13), and P(A | Ωi,12) is given by equation (17). Admissions thresholds influence both
P(B|A,Ωi,12) and P(A | Ωi,12).

When there are multiple colleges per tier, as in estimation, I modify P(B|A,Ωi,12) as
follows:

P (B | A,Ωi,12) =
C∏
c=1

(
A(c)

B(c)

)
P(Sc

i > Sc∗
URMi

| Ωi,12)
B(c)P(Sc

i < Sc∗
URMi

| Ωi,12)
A(c)−B(c) ,

where A(c) denotes the number of applications to schools in tier c in portfolio A, and B(c)

is defined analogously for acceptances.

The first part of colleges’ objective function, E[logKi,12|Attendi,c = 1] can be expressed
as follows:

E[logKi,12|Attendi,c = 1] =
E[logKi,121(Attendi,c = 1)]

P(Attendi,c = 1)
,

40The formula for P(Attendi,c = 1 | URMi = 1) is analogous to equation (G-1), except that it averages
only over URM students.
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where the numerator equals:

E[logKi,121(Attendi,c = 1)] =
1

N

∑
i

E[logKi,121Attendi,c=1 | Ωi,9] ,

=
1

N

∑
i

∑
a

∫
E[logKi,121Attendi,c=1 | Ωi,12)dF (Ωi,12 | a,Ωi,9)p(a | Ωi,9) ,

=
1

N

∑
i

∑
a

∫
mi,12P(Attendi,c = 1 | Ωi,12)dF (Ωi,12 | a,Ωi,9)p(a | Ωi,9) ,

where the third equality follows from independence between logKi,12 and the shocks
governing matriculation, admission, and application conditional on Ωi,12.

The partial derivatives of diversity with respect to the admissions thresholds satisfy:

∂P(URMi=1|Attendi,c=1)
∂Sc

j
∗

P(URMi = 1 | Attendi,c = 1)
=

∂P(Attendi,c=1|URMi=1)
∂Sc

j
∗

P(Attendi,c = 1 | URMi = 1)
−

∂P(Attendi,c=1)
∂Sc

j
∗

P(Attendi,c = 1)
,

for j = URM,WA. Note that if j = WA, then ∂P(Attendi,c=1|URMi=1)

∂Sc
j
∗ = 0.

The remaining equations needed to compute the first-order conditions in section 3.4
and solve for the equilibrium are copied below:

∂E[logKi,12 | Attendi,c = 1]

∂Sc
j
∗ =

∂E[logKi,121(Attendi,c=1)]
∂Sc

j
∗ P(Attendi,c = 1)− E[logKi,121(Attendi,c = 1)

∂P(Attendi,c=1)
Sc
j
∗

P(Attendi,c = 1)2
,

∂P(Attendi,c = 1)

∂Sc
j
∗ =

1

N

∑
i

∑
a

∫
∂P(Attendi,c = 1 | Ωi,12)

∂Sc
j
∗ dF (Ωi,12 | a,Ωi,9)p(a | Ωi,9) ,

∂P(Attendi,c = 1 | Ωi,12)

∂Sc
j
∗ =

∑
B⊆A

P(Ci = C|B,Ωi,12)×

∑
A∈A(SATi(a))

∂P(B|A,Ωi,12)

∂Sc
j
∗ P(A | Ωi,12) + P(B|A,Ωi,12)

∂P(A | Ωi,12)

∂Sc
j
∗ ,

∂P(B|A,Ωi,12)

∂Sc
j
∗ =

P(B | A,Ωi,12)ϕ(S
c
j
∗)
[
− B(c)

P(Sc
i>Sc

j
∗|Ωi,12)

+ A(c)−B(c)
P(Sc

i<Sc
j
∗|Ωi,12)

]
for URMi = j

0 for URMi ̸= j

∂P(A | Ωi,12)

∂Sc
j
∗ =

P(A | Ωi,12)

λA

( ∑
B⊆A

∂P(B|A,Ωi,12)

∂Sc
j
∗ Ui,B−

∑
A′∈A(SATi(a))

P(A′ | Ωi,12)
∑

B′⊆A′

∂P(B′|A′,Ωi,12)

∂Sc
j
∗ Ui,B′

)
,

where Ui,B comes from equation (12).
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∂E[logKi,121(Attendi,c = 1)]

∂Sc
j
∗ =

1

N

∑
i

∂E[logKi,121Attendi,c=1 | Ωi,9]

∂Sc
j
∗ ,

=
1

N

∑
i

∑
a

∫
∂E[logKi,121Attendi,c=1 | Ωi,12)

∂Sc
j
∗ dF (Ωi,12 | a,Ωi,9)p(a | Ωi,9) ,

=
1

N

∑
i

∑
a

∫
mi,12

∂P(Attendi,c = 1 | Ωi,12)

∂Sc
j
∗ dF (Ωi,12 | a,Ωi,9)p(a | Ωi,9) ,

Since each tier contains of a continuum of colleges, schools do not take into account how
their choice of admissions thresholds influences students’ choices while in high school.
This explains why none of the first-order conditions from the college problem contain
partial derivatives of p(a | Ωi,12) with respect to the admissions thresholds.

G.2 Solving the Model in Estimation

In estimation, colleges take as given the pattern of applications {Ai}Ni=1 and distribution
of state variables {Ωi,12}Ni=1 in the data. The only uncertainty when setting thresholds is
over the probability of attendance conditional on admission. Several of the expressions
in the previous section are therefore greatly simplified. The expressions that simplify are
as follows:

P(Attendi,c = 1) =
1

N

∑
i

P(Attendi,c = 1 | Ωi,12) ,

E[logKi,121(Attendi,c = 1)] =
1

N

∑
i

mi,12P(Attendi,c = 1 | Ωi,12) ,

∂P(Attendi,c = 1)

∂Sc
j
∗ =

1

N

∑
i

∂P(Attendi,c = 1 | Ωi,12)

∂Sc
j
∗ ,

∂E[logKi,121(Attendi,c = 1)]

∂Sc
j
∗ =

1

N

∑
i

mi,12
∂P(Attendi,c = 1 | Ωi,12)

∂Sc
j
∗ .

G.3 Computation

Since colleges take {Ωi,12, Ai}Ni=1 as given, solving for the equilibrium thresholds in the
NFXP algorithm is not computationally costly: I need only to calculate the probabilities
of admission and matriculation given the observed application and admission portfolios.
However, evaluating P (ai | Ωi,12, θ) is very costly, because for every student and every ac-
tion she may take, I must integrate over the distribution of (mi,12, Pi,12) given (Ωi,9, a), and
compute the inclusive value, V

Coll

i (mi,12, Pi,12, SATi(a)), which depends on all 584 possible
application portfolios. To speed up computation, I precompute V

Coll

i (mi,12, Pi,12, SATi) on
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a grid for each student and use interpolation to simulate the values between grid points.
V

Coll

i (mi,12, Pi,12, SATi) varies smoothly with mi,12, and Monte Carlo simulations (avail-
able upon request) reveal that interpolation introduces negligible error.

Solving for the admissions thresholds in counterfactual policy simulations is also com-
putationally intensive, because the applications in these counterfactual scenarios do not
yet exist and cannot be conditioned on, as in estimation. Instead, these counterfactual
application portfolios must be integrated over. This requires evaluating, for each student,
for each action they take in high school, the probability of attending each school, which
involves integrating over the realization of the continuous variable mi,12, the probability
of applying to each of the 584 application portfolios, and the probability of matriculating
to each school conditional on each possible admissions portfolio. A single function eval-
uation can take over 24 hours, and solving for the equilibrium would be computationally
infeasible on all but the most advanced machines.

Careful inspection of the model reveals that, for each set of admissions thresholds,
{{Sc∗

URM}1URM=0}Cc=1, the 2 × C equations in section 3.4 that characterize the equilibrium
depend only on the following 2× C + 1 quantities

P(Attendi,c = 1) for c = 1, . . . , C ,

∂P(Attendi,c = 1)

∂Sc∗
URM

for c = 1, . . . , C ,

V
Coll

i (mi,12, Pi,12, SATi) , (G-2)

for every individual i = 1, . . . , N . The values in (G-2) are time-consuming to compute,
but they are themselves deterministic functions of the following variables:

Υi =

({
P(Sc

i > Sc
URMi

∗ | mi,12, Pi,12),
∂P(Sc

i > Sc
URMi

∗ | mi,12, Pi,12)

∂Sc
URMi

∗ , Ui,c, Disti,c

}C

c=1

,

Ui,0, Inci,MomCollegei

)
.

I use lasso regression to estimate the equations in (G-2) as linear functions of a second-
order polynomial of the variables in Υi. Then, when optimizing the equilibrium mapping
to solve for the admissions thresholds, Sc∗

j for j = 0, 1, I recompute the values of Υi that
change when the thresholds are updated, and use the regression coefficients obtained by
lasso to quickly project the values of (G-2) before evaluating the equilibrium mapping.

The R2 from the 2×C +1 lasso regressions used to predict the values in (G-2) average
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0.97. This method shortens the computation time for evaluating the equilibrium from
over 24 hours on a standard PC to 12 seconds while introducing negligible error.

H Standard Errors

Section 5 describes how the model is estimated in two steps. Standard errors for θ1,
which include the parameters governing the dynamic factor model and college comple-
tion model are obtained from the Hessian of the partial likelihood function in (23). I then
use the delta method to obtain standard errors for, θ2, the preference parameters estimated
by optimizing equation (24).

The delta method states that if we have a set of parameters, θ1, distributed normally
with variance V as follows

θ1 ∼ N(0, V ) ,

then some (possibly) vector-valued function of θ1, h(·), has the following distribution

h(θ1) ∼ N

(
0,

∂h

∂θ′1
V

∂h

∂θ1

)
. (H-1)

To use the delta method, I write the solution to the second step of the optimization as a
function of θ1 so that θ∗2 = h(θ1), where

h(θ1) = argmax
θ2

l(θ1, θ2) .

The Jacobian of h with respect to θ1 is then

∂h

∂θ1
=

∂

∂θ1
argmax

θ2
l(θ1, θ2) .

I use a Taylor expansion around the solution to the second step of optimization to obtain
an expression for this Jacobian.

At the optimum of the second stage of estimation, we know that

∂

∂θ2
l(θ1, θ2) = 0 .
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A first-order Taylor expansion of this equation around (θ1, θ2) = (a, b) yields:

∂

∂θ2
l(θ1, θ2) =

∂

∂θ2
l(a, b) +

∂2

∂θ2∂θ1
l(a, b)(θ1 − a) +

∂2

∂θ22
l(a, b)(θ2 − b) +R1(θ1, θ2) .

Through rearranging and ignoring higher-order terms, we get that

θ2 − b =

(
∂2

∂θ22
l(a, b)

)−1(
∂

∂θ2
l(θ1, θ2)−

∂

∂θ2
l(a, b)− ∂2

∂θ2∂θ1
l(a, b)(θ1 − a)

)
,

≈
(

∂2

∂θ22
l(a, b)

)−1(
− ∂2

∂θ2∂θ1
l(a, b)(θ1 − a)

)
,

where the second equality follows because the first-order conditions of the likelihood
are near zero in the vicinity of the solution. Rewriting the above equation in terms of
differentials yields

dh =

(
∂2

∂θ22
l(a, b)

)−1(
− ∂2

∂θ2∂θ1
l(a, b)dθ1

)
,

and so

∂h

∂θ1
=

(
∂2

∂θ22
l(a, b)

)−1(
− ∂2

∂θ2∂θ1
l(a, b)

)
(H-2)

The first part of equation (H-2) is just the Hessian from the second-step of estimation. I
estimate the second part numerically by perturbing the joint likelihood. With an estimate
of ∂h

∂θ1
, I compute the standard errors for θ2 according to (H-1). The standard errors in

Tables 7 and 9 are computed according to this method. The standard errors for θ1, in
the remaining tables, are obtained immediately from the Hessian from the first stage of
optimization.

I Additional Policy Counterfactuals

I.1 SAT-Optional Policy at Elite Private Colleges Only

The policies examined in the main text of the paper analyze educational outcomes when
all colleges pursue the same admissions policy. This section instead evaluates what hap-
pens when a single college deviates and pursues a different policy than the rest. I consider
a policy in which elite private colleges permit applications from non SAT-takers, while
other colleges continue to require the SAT. Students who do not take the exam can either
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apply to elite private colleges or to no college at all. This policy therefore aims to mimic
the behavior of small numbers of liberal arts colleges that started going SAT-Optional in
2005, while the rest of the college market continued to require the exam (Epstein 2009).
For computational reasons, I abstract from the strategic decision of whether an SAT-taker
should send an SAT score and instead assume that all students who take the SAT send
their scores.41

Table I-1 shows the pattern of college sorting by knowledge under the SAT-Optional
policy. The first two sets of columns show sorting under the status quo and under the No-
SAT policy analyzed in the main text for comparison. Relative to the status quo, there is
little change in college sorting by knowledge when elite private colleges go SAT-Optional.
Average knowledge at tier one schools actually increases. This result contrasts with the
marked decline in average knowledge under the No-SAT policy, and it arises because elite
colleges continue to receive applications from students who applied in the status quo with
an SAT score, for whom there is no loss of information, plus additional applications from
students who did not take the SAT. Admissions thresholds at tier one schools increase by
over one-tenth of a standard deviation (Table I-2), underscoring how policies that lead to
more applications can increase selectivity. The effect of raising thresholds offsets the cost
of not having the SAT for some of the applicants and leaves elite private colleges with
similarly skilled students.42

Table I-3 displays estimates of racial diversity, λc
URM , and sorting to college by house-

hold income under the SAT-Optional policy. Relative to the status quo, racial diversity
falls slightly at Tier 1 colleges under the SAT-Optional policy, from 18.2% to 16.5% of
students. SAT-Optional admissions does, however, help elite colleges to enroll more low-
income students and the average household income of students attending these colleges
falls, from $110,000 to $105,000. Even though diversity falls, the increase in the average
knowledge of matriculating students is large enough to raise the objective function of Tier
1 colleges (κ1 · 1.45 + (1− κ1) · log(0.165) > κ1 · 1.41 + (1− κ1) · log(0.182)). The fact that a
single college tier can improve its objective function by going SAT-Optional suggests that
requiring the SAT may not have been a Nash equilibrium and provides one explanation
for the unraveling of SAT requirements since 2005.

41Allowing students to decide whether to send their scores to elite private colleges increases the size of
the application portfolio from 36 to 2× 36, because there are now two separate applications to elite private
colleges, those that contain SAT scores and those that omit them.

42Appendix J shows that these findings are consistent with papers in the education literature that evaluate
SAT-Optional policies at liberal arts colleges using difference-in-differences.
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Table I-1: SAT-Optional at Elite Private Colleges

Status Quo No SAT SAT-Optional

E[logKi,12] All URM WA All URM WA All URM WA

Tier 1 1.41 0.96 1.51 1.20 0.66 1.34 1.45 1.00 1.54
Tier 2 0.79 0.37 0.90 0.77 0.33 0.87 0.76 0.34 0.88
Tier 3 0.38 -0.08 0.54 0.38 -0.07 0.54 0.39 -0.08 0.55
Tier 4 1.15 0.80 1.22 1.03 0.60 1.10 1.14 0.79 1.21
Tier 5 0.76 0.47 0.82 0.73 0.39 0.79 0.73 0.45 0.79
Tier 6 0.31 -0.14 0.45 0.39 -0.06 0.54 0.30 -0.15 0.45
Any College 0.61 0.14 0.74 0.6 0.10 0.73 0.60 0.13 0.73
No College -0.47 -0.83 -0.28 -0.49 -0.82 -0.31 -0.47 -0.83 -0.28

The table presents simulated estimates of mean knowledge by college tier under the
status quo, No SAT, and SAT-Optional policies. The SAT-Optional Policy allows stu-
dents who have not taken the SAT to apply to elite private colleges (Tier 1). Simulated
moments are computed using 200 simulated data sets. WA refers to the population
of white and Asian students. SOURCE: (ELS 2002)

Table I-2: Admissions Thresholds, SAT-Optional

Status Quo SAT-Optional

White & Asian URM White & Asian URM

Tier 1 1.07 0.54 1.18 0.73
Tier 2 0.25 -0.20 0.19 -0.26
Tier 3 -0.29 -0.85 -0.31 -0.87
Tier 4 0.71 0.39 0.70 0.38
Tier 5 0.13 -0.02 0.07 -0.08
Tier 6 -0.51 -1.01 -0.54 -1.04

The table presents admissions thresholds at each college tier under the status quo and SAT-
Optional policies. The SAT-Optional Policy allows students who have not taken the SAT to
apply to elite private colleges (Tier 1). Thresholds have been standardized by the mean and
sd of logKi,12. SOURCE: (ELS 2002)

I.2 How Biased would the SAT Need to Be to Justify Abandoning It?

Table 5 in the main text found no evidence that the SAT math and verbal examinations
were biased against URM students, but assessing this required assuming scalar invari-
ance of the NCES math exams, because it is not possible to distinguish a difference in
latent skills by demographic from a level shift in all the intercepts mapping those latent
skills to the observed measurements. This means that if all measurements were biased
against URM students, the tests in Table 5 would be unable to detect any bias. Even if
the exams were biased against URMs, this would not affect their chance of admission
in the model, because colleges in the model use the Kalman Filter, which corrects for any
biases when using the measurements to predict each students’ knowledge. This section
therefore explores a setting in which the SAT is biased against URMs and colleges do not
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Table I-3: Diversity and Household Income by College

Diversity (λc
URM ) Household Income

Status Quo No SAT SAT-Optional Status Quo NoSAT SAT-Optional

Tier 1 0.182 0.205 0.165 110K 108K 105K
Tier 2 0.207 0.194 0.209 96K 94K 95K
Tier 3 0.260 0.266 0.256 74K 71K 74K
Tier 4 0.160 0.135 0.163 103K 100K 103K
Tier 5 0.162 0.134 0.164 92K 90K 92K
Tier 6 0.247 0.252 0.247 72K 70K 72K

The table presents simulated estimates of the fraction of URMs attending each tier of
college and mean household income under the status quo, No SAT, and SAT-Optional
policies. The SAT-Optional Policy allows students who have not taken the SAT to apply to
elite private colleges (Tier 1). Simulated moments are computed using 200 simulated data
sets. SOURCE: (ELS 2002)

correct for it. The exercise asks, How biased would the SAT need to be for banning it to
raise URM enrollment?.

To evaluate this scenario, I solve for each university’s preferences for knowledge and
diversity, given by κc, under assumptions that both the SAT math and verbal exams are
biased by x standard deviations, where I vary x between 0 and 1. When these exams are
biased against URMs and universities fail to take this into account, the admissions deci-
sions observed in the data can only be rationalized by a higher preference for diversity
(lower κc). With this new value of κc, I use the model to simulate banning the SAT and
plot university enrollment in Figure I-1. The figure shows that, as the bias against URMs
increases, banning it causes URM access to increase from 32.9% of the sample enrolled
in four-year colleges, when there is no bias in the exam, to 45.4%, when the SAT math
and verbal exams are both biased by one standard deviation. URM students score 0.6 sd
lower than white and Asian students on the SAT math and verbal exams in the ELS 2002.
The figure suggests that, if there were no population differences in skills and the entire
difference in SAT scores were due to bias that universities fail to account for, banning the
SAT would raise URM enrollment by 8.2 pp.

I.3 Beyond Affirmative Action

The model in section 3 allows colleges to practice affirmative action (AA) in two related
ways: through a preference for diversity, κc in equation (7), and through having separate
demographic-specific thresholds for admission. All the estimated thresholds in Table 8
differ by demographic, implying that at least some colleges in each tier engage in AA.

In June 2023, the Supreme Court banned AA in college admissions, simultaneously
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Figure I-1: URM Enrollment as a Function of Uncorrected Bias in the SAT

The figure shows URM enrollment if the SAT were banned as a function of bias in the SAT math and verbal
exams. The simulation assumes that colleges do not correct for any bias against URM students. Under
an assumption that the two exams are biased, status quo enrollment can only be rationalized by colleges
having a higher preference for diversity. Banning the SAT is then simulated under this higher preference
for diversity. Bias in both exams proceeds in increments of 0.1 sd, and 20 simulated data sets are used to
compute URM enrollment for each bias increment.

outlawing both preferences for diversity and separate admissions thresholds by demo-
graphic (Students for Fair Admissions, Inc. v. President and Fellows of Harvard College,
600 U. S. 2023). In this section I use the model to simulate how banning AA would change
enrollment patterns. Given the university problem in (7), each school’s race-blind thresh-
old is entirely determined by its capacity constraint.43

Table I-4 presents simulated attendance rates for URM and low-income students fol-
lowing the AA ban. Relative to a setting with AA (Table 11), banning AA reduces URM at-
tendance at each school and by 6-8 pp overall depending on the policy regime.44 Banning
AA also reduces low-income enrollment, but by less. When AA is outlawed, banning the

43Chan and Eyster (2003) analyze a setting in which colleges have racial preferences but cannot use sep-
arate admissions thresholds by race. They show that the optimal admissions policy is a mixed strategy
that depends on the capacity of the college and typically involves randomly admitting students with skills
above a threshold. In this section, I remove racial preferences from colleges’ objective function (7). Colleges
compete to admit the most knowledgeable students, leading to a single threshold rule for all students.

44Bleemer (2022) finds that the AA ban in California in 1998 decreased URM enrollment at UC campuses
by 5.8 pp conditional on application.
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SAT and going SAT-for-All both have negligible effects on URM enrollment. Low-income
enrollment, however, increases under both counterfactual policies relative to the status
quo admissions policy.

The intuition for the null result of changing SAT policies on URM enrollment is the
same regardless of whether colleges engage in AA. There are a small number of non-SAT
takers who would gain admission without SAT requirements, but these marginal appli-
cants are largely shut out by the rise in admissions thresholds as more students apply.
Table I-5 shows that thresholds rise at each school, sometimes by quite large amounts,
when banning the SAT and going SAT-for-All. While the ban on AA presents a new pol-
icy environment to analyze, the same mechanisms as before frustrate efforts to increase
URM enrollment. Fundamentally, banning the SAT pits a larger and more diverse appli-
cant pool at the expense of less information. If the pool of students who fail to take the
SAT in the status quo contains a sizable number of highly-skilled URMs who can outcom-
pete existing SAT-takers, then banning the SAT may raise URM enrollment. But, Figure 2
in the main text showed that this is unlikely, because the difference in skills between tak-
ers and non-takers is large. The negligible effects on URM enrollment in Table I-4 result
from the unequal distribution of skills – between SAT-takers and non-takers and between
URM and white and Asian students – among likely college applicants.

Table I-4: Access to College without Affirmative Action

URM Attendance Low-Income Attendance

Status Quo No SAT SAT-for-All Status Quo No SAT SAT-for-All

Attend Tier 1 School 0.006 0.006 0.006 0.007 0.007 0.008
Attend Tier 2 School 0.034 0.033 0.029 0.033 0.035 0.032
Attend Tier 3 School 0.038 0.045 0.045 0.043 0.054 0.054
Attend Tier 4 School 0.016 0.016 0.016 0.018 0.019 0.019
Attend Tier 5 School 0.035 0.035 0.032 0.038 0.039 0.037
Attend Tier 6 School 0.134 0.128 0.132 0.149 0.161 0.165
Attend Any College 0.265 0.262 0.261 0.288 0.315 0.315

The table displays rates of attendance for URM and low-income students at each college tier follow-
ing the ban on affirmative action under three separate policies: the status quo, a policy where the
SAT is banned, and a policy in which all students take the SAT and submit their scores with their
applications. Low-income refers to students whose families earn less than the median ($52,500 per
year). Simulated moments are computed using 200 simulated data sets. SOURCE: (ELS 2002)
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Table I-5: Admissions Thresholds, with and without Affirmative Action

Affirmative Action No Affirmative Action
Status Quo No SAT SAT-for-All Status Quo no SAT SAT-for-All

WA URM WA URM WA URM All All All

Tier 1 2.50 1.81 2.55 1.85 2.60 1.93 2.40 2.45 2.50
Tier 2 1.43 0.86 1.65 1.22 1.73 1.22 1.29 1.55 1.60
Tier 3 0.75 0.02 1.01 0.36 1.02 0.34 0.55 0.83 0.84
Tier 4 2.03 1.62 2.11 1.87 2.15 1.78 1.96 2.06 2.08
Tier 5 1.29 1.09 1.51 1.48 1.59 1.42 1.22 1.49 1.53
Tier 6 0.47 -0.18 0.98 0.42 0.99 0.39 0.24 0.81 0.81

The table presents admissions thresholds at each college tier before and after the ban on affir-
mative action under three separate policies: the status quo, a policy where the SAT is banned,
and a policy in which all students take the SAT and submit their scores with their applications.
After the ban on affirmative action, all applicants to a school are subject to the same admissions
threshold. WA refers to the population of white and Asian students. SOURCE: (ELS 2002)

J External Validation

J.1 Prior Literature

A small literature in economics has examined the effects of changing SAT requirements
in admissions. Hurwitz et al. (2015) find that mandating the SAT in Maine caused a 2-3
pp increase in enrollment but no statistically significant increase in college completion.
The authors’ back-of-the-envelope calculations suggest that rates of completion would
have increased by 1.3 pp, but such a change would be too small to detect in the sample.
Hyman (2017) find that SAT-for-All raised four-year completion rates in Michigan by 0.5
pp, which is statistically significant given the much larger sample size. Half a percentage
point is surely a lower bound for eight-year completion rates, which this paper finds
increase by 1 pp in response to SAT-for-All.

In the mid 2000s a number of schools, primarily liberal arts colleges, began allowing
applicants to voluntarily submit SAT scores, a policy that has been dubbed SAT-Optional
admissions. Belasco, Rosinger, and Hearn (2015) create a panel of 180 selective liberal
arts colleges between 1992 and 2010 and use difference-in-differences to compare several
outcomes between schools that went test-optional and those still requiring exam scores.
They find no effects of SAT-optional admissions on either URM enrollment or the pro-
portion of Pell grant recipients (a proxy for low income). The policy instead caused a
significant increase of approximately 14% in the number of applications received. These
findings, which are confirmed in later analysis by Sweitzer, Blalock, and Sharma (2018)
and Rosinger and Ford (2019), are consistent with the No-SAT policy evaluated in this
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paper. Saboe and Terrizzi (2019) extend the analysis to all colleges and universities using
more recent data, and similarly find null results on racial and socioeconomic diversity.
Bennett (2022) instead argues that the control group in this analysis should not include all
colleges and universities, but instead only those schools with similar Barron’s selectivity
rankings who continued to maintain SAT requirements. In this modifed sample, Bennett
finds that going SAT-Optional raised URM enrollment by 10% and the enrollment of Pell
Grant recipients by about 3-4% but had not effect on applications. Rationalizing these
findings with the earlier literature will require exploring the trends in enrollment and
applications at schools excluded by Bennett but included in earlier analyses.

J.2 Statistics Following Covid-19 Pandemic

In response to the onset of the Covid-19 pandemic, a large majority of schools stopped re-
quiring SAT scores from applicants. This makes it possible to use recent data to validate
some of the model’s predictions. This analysis is subject to several caveats. The first is
that this paper uses data for a cohort of students that matriculated to college in 2004, six-
teen years before the pandemic. Additionally, the pandemic altered many aspects of life
related to the transition to college, not only admissions policies, and changes in patterns
of college attendance are likely to reflect a combination of admissions changes and other
Covid-induced factors. The model counterfactuals also feature an endogenous effort re-
sponse, but it is likely that few students foresaw the onset of the pandemic and adjusted
their behavior accordingly while in high school. Lastly, the current SAT-Optional policy
differs from the ban on the SAT analyzed in the main text, although it still incorporates
the same inherent tradeoff between allowing for a larger applicant pool but reducing the
information available to select candidates.

At the time of writing, there were two publicly available data sources to externally
validate the model. It is possible to construct tier-specific growth rates in applications
between the 2019-2020 and 2020-2021 application season using data from the Integrated
Postsecondary Education Data System (IPEDS).45 The Common App instead has statistics
on overall application growth for its 853 member colleges but does not break the statistics
down by tier (Freeman et al. 2022). Table J-1 reveals that applications increased overall
after the elimination of SAT requirements (and after the onset of the pandemic) by 6% in
the IPEDS data and by 21% in the Common App data. The IPEDs statistics show dramatic
increases in applications to elite schools (tiers 1 and 4). The corresponding statistics in the

45The 2020-2021 application season was the first season in which a majority of schools no longer required
that applicants submit SAT scores.
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Table J-1: Application Growth for 2021-2022 Academic Year

Model IPEDS Common App

Tier 1 0.16 0.25
Tier 2 0.17 0.05
Tier 3 0.27 -0.06
Tier 4 0.16 0.15
Tier 5 0.20 0.09
Tier 6 0.24 0.00
Overall 0.21 0.06 0.21

The table displays statistics on application growth in 2020-2021 relative to
2019-2020 from IPEDS and the Common App compared with analogous
statistics generated by the model in response to banning the SAT. SOURCE:
Integrated Postsecondary Education Data System and (ELS 2002)

model for the policy that bans the SAT are 21% for overall application growth, and 16%
for application growth at elite private and public universities.

The Common App breaks down statistics on application growth by URM status. Ap-
plications from URMs increased by 18%, while non-URM applications increased by 13%.
The findings in this paper are 31% and 18%, respectively. The total increase in applica-
tion volume to Common App schools between 2019-2020 and 2021-2022 was 21.3%. The
corresponding number in the paper is 21%.

An interesting finding from the Common App statistics is that a racial gap in test score
reporting has opened up. Before the change in admissions policies, URM applicants were
5% less likely to submit SAT scores with their applications. That figure has since increased
to 15%. As long as test scores are not necessary, this paper predicts that URMs would be
less likely to report them since they face greater financial and logistical barriers to taking
the exam.

K A Model Including Noncognitive Skills

This section presents the estimates of a dynamic factor model of skill accumulation in high
school with two latent skills. This model includes measurements of students’ underlying
noncognitive skills in addition to the cognitive measurements of grades and standardized
tests analyzed in the main text.

The ELS 2002 creates subscales of noncognitive skills for students in the 10th and the
12th grades by taking the first principal component of a series of survey responses by the
students and their teachers. There are eight of these noncognitive skill measurements,
seven in the 10th grade and one in the 12th grade. The tenth grade measurements are En-
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glish Self-Efficacy, Math Self-Efficacy, Writing Ability, Control Expectation, Action Con-
trol, Motivation, and Class Preparation. Students are additionally scored according to
their Math Self-Efficacy in the 12th grade. All subscales except for the writing ability sub-
scale are formed from ordered responses to individual survey questions asking students
how much they agree with statements like “I’m certain I can understand the most diffi-
cult material presented in English texts” and “When studying, I try to work as hard as
possible.” The writing ability subscale is instead created from questions that ask each stu-
dent’s English teacher to rate things like the student’s “ability to organize ideas logically
and coherently.”46

The noncognitive skill measurements do not appear in each year of high school, which
makes it difficult to estimate a model that simultaneously allows for time-varying noncog-
nitive and cognitive skills. The model in this section therefore allows cognitive skills to
vary over time while noncognitive skills remain constant. The technology of skill forma-
tion is given by the following equation:
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Equation (K-1) allows noncognitive skills in year t − 1 to influence cognitive skills in
year t through γ12 and investment variables to influence cognitive skills in the same year
through β11, . . . , β1K . Noncognitive skills, however, are not affected by prior cognitive
skills or contemporaneous investment.

As in section 3, the skill measurements are noisy representations of the underlying
latent skills as follows:

yi,t︸︷︷︸
Mt×1

= µR
t︸︷︷︸

Mt×1

+ αR
t︸︷︷︸

Mt×2

logKi,t︸ ︷︷ ︸
2×1

+ εRi,t︸︷︷︸
Mt×1

, (K-2)

where αR
t now has dimension Mt × 2 (Mt is the number of measurements in year t) to

account for the fact that some measurements load onto both the cognitive and noncogni-
tive skill dimensions. I assume that the standardized tests in the data load only onto the
first dimension of skill (which I refer to as cognitive), grade point averages (GPAs) load
onto both dimensions of skill, and the noncognitive skill measurements load only onto
the second dimension of skill.

46Depending on the question, the answers are Almost Never, Sometimes, Often, Almost Always; or Poor,
Fair, Good, Very Good, Outstanding.
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Because the noncognitive measurements are assumed to load only onto the second
latent skill, the model is overidentified, and it is possible to allow for correlation be-
tween the two latent skills in the initial period.47 I parameterize the covariance between
cognitive and noncognitive skills as a function of the same variables that determine the
mean and variance of initial skills (URM, gender, grade retention, a single parent dummy,
mother’s education, and household income). The exact structure of αR

t , which determines
which measurements load onto each skill, can be seen in Table K-4, where an estimate of
0 and a standard error of (−) means that the measurement does not load onto that skill.

I estimate the two-skill dynamic factor model on the same sample as the main results
in section 6. Because complete teacher surveys are only available for 45% of these stu-
dents, I first use multiple imputation to impute a full set of responses to all questions be-
fore conducting principal components analysis and estimating the dynamic factor model,
with the first principal component of each set of measurements forming a unique noncog-
nitive skill measurement. The results of the estimation, in Tables K-1, K-2, K-3, K-4, and
K-5, represent the results from the data set combining imputed and complete data.48

Table K-1 shows estimates of parameters governing the distribution of ninth-grade
skills. The findings for cognitive skills are similar in sign and magnitude to those for
the one-factor model in Table 4: URM students begin high school with a cognitive skill
disadvantage of over half a standard deviation, students who had been retained prior to
high school enter at an even larger disadvantage, and initial cognitive skills are sharply
increasing in parental education. Noncognitive skills show a similar pattern, with URM
and retained students experiencing a disadvantage in these skills and noncognitive skills
increasing in mother’s education and family income (albeitly more slowly than for cogni-
tive skills). A noteworthy difference, however, is that girls enter high school with a very
slight disadvantage in cognitive skills but an advantage in noncognitive skills of 0.11 sd.

Table K-2 presents estimates of the technology of skill formation. Studying and lagged
knowledge are similarly productive as in the one-skill model (Table 6). Noncognitive
skills, at least as identified by the noncognitive skill measurements in the ELS 2002, do
not appear to contribute to the development of cognitive skills in high school.49 The

47With fewer overidentifying restrictions, it would be necessary to normalize the covariance matrix of
ninth grade skills to be diagonal.

4845% of individuals in the sample from the main text have complete data on all survey responses that
comprise the noncognitive subscales. However, only 15.1% of observations are imputed, because most stu-
dents with incomplete data lack only a few observations. The imputation method is an ordered logistic
regression that uses student and teacher ordered responses as predictors only. Therefore, a student’s re-
sponse to how hard they work when studying can be used to predict their (missing) response to a question
about how prepared they are for class, but the student’s demographic group, family income, or grades are
not used as part of the imputation model.

49This contrasts with a body of research showing how noncognitive skills in childhood and early adoles-
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Table K-1: Parameters Governing Initial Distribution of Skills

Cognitive Skill Noncognitive Skill
Mean Log Variance Mean Log Variance

URM -0.56 -0.03 -0.73 0.31
(0.03) (0.05) (0.22) (0.14)

Female -0.06 -0.07 0.11 -0.02
(0.02) (0.02) (0.02) (0.02)

Retain -0.67 -0.15 -0.42 0.06
(0.04) (0.03) (0.05) (0.03)

Single Parent -0.10 -0.01 -0.10 0.06
(0.02) (0.02) (0.03) (0.02)

Mother: High School 0.18 -0.05 0.02 0.01
(0.04) (0.03) (0.05) (0.03)

Mother: Some College 0.34 -0.07 0.07 -0.01
(0.04) (0.03) (0.05) (0.03)

Mother: Bachelors 0.60 -0.03 0.27 0.00
(0.05) (0.03) (0.05) (0.03)

Mother: Postgraduate 0.77 -0.03 0.35 -0.06
(0.06) (0.04) (0.06) (0.04)

HH Income 0.08 -0.01 0.04 -0.01
(0.01) (0.00) (0.01) (0.00)

The table presents estimates of parameters governing the initial distribu-
tion of cognitive and noncognitive skills in the ninth grade. The mean and
variance of both skills have been normalized to 0 and 1, respectively, for
individuals whose covariates are all equal to 0. HH Income is measured
in hundreds of dollars per week. High school dropout is the omitted edu-
cation category. SOURCE: (ELS 2002)

yearly change in cognitive skills, given by the constant, is similar to the model that does
not account for noncognitive skills.

Table K-3 presents estimates of the intercepts in the measurement equations, µR
t , for

all measurements in the data. The NCES exams in Math in the 10th and 12th grades and
ninth grade GPA have been normalized to be unbiased. Even in a model when grades
are allowed to load onto both cognitive and noncognitive skills, the inferences about bias
on the SAT and GPA are qualitatively the same as in the single skill model in Table 5.
There does not appear to be any evidence that the SAT is biased against URM students,
and there appears to be some bias against URM students in twelfth grade GPA. Table
K-3 provides evidence against bias in students’ and teachers’ subjective assessments of
URM students. On nearly all of the noncognitive skill measures, URM students score
higher than one would expect given their underlying latent noncognitive skill (the one
exception is the class preparation subscale).

cence have strong effects on the development of cognitive skills (Cunha, Heckman, and Schennach 2010;
Agostinelli and Wiswall 2020). Both the difference in the stage of development (high school vs childhood)
and differences in the set of measurements used to identify noncognitive skills may explain the discrepancy.
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Table K-2: Technology of Skill Formation

URM White & Asian

Knowledge(-1) 1.03 1.05
(0.01) (0.00)

Noncognitive(-1) 0.00 0.00
(0.00) (0.00)

Study, 10 hours/wk 0.07 0.06
(0.01) (0.01)

Private School 0.04 0.02
(0.01) (0.01)

Free Lunch -0.10 -0.15
(0.02) (0.02)

Student Teacher Ratio 0.00 0.00
(0.00) (0.00)

Mother: High School -0.01 -0.01
(0.01) (0.01)

Mother: Some College -0.02 -0.01
(0.01) (0.01)

Mother: Bachelors -0.03 -0.02
(0.02) (0.01)

Mother: Postgraduate -0.03 -0.02
(0.02) (0.02)

Constant 0.18 0.17
(0.03) (0.02)

The table displays estimates of parameters governing the technology of skill
formation. Study refers to the effect of studying 10 hours per week on next
year’s skills. Free lunch is measured on a scale from 0 to 1. High school
dropout is the omitted education category. SOURCE: (ELS 2002)

Table K-4 displays estimates of the signal-to-noise ratios for all of the measurements
in the data. Unlike in Table 5, there are separate signal-to-noise ratios for each measure-
ment’s loading onto the cognitive and noncognitive skill dimensions. The signal-to-noise
ratios for measurements that load only onto cognitive skills are computed by dividing
that measurement’s loading onto the first skill dimension by the standard deviation of the
shock of that measurement. For measurements that load only onto noncognitive skills, I
divide that measurement’s loading onto the second skill dimension by the standard de-
viation of the shock of that measurement. There are two separate signal-to-noise ratios
for measurements that load onto both skills (GPAs). Table K-4 shows that GPAs are less
informative signals of both cognitive and noncognitive skills for URM students than for
white and Asian students, results that echo the findings from the one-skill model in Ta-
ble 5. The SAT Math exam has a lower signal-to-noise ratio for URM students, but all
other standardized exams have higher signal-to-noise ratios for URM students than for
white and Asian students. Finally, the noncognitive skill measurements are noisier for
URM students than for white and Asian students. These findings support the analysis in
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Table K-3: Estimates of µR
t

URM White & Asian Difference

GPA, 9th grade -0.15 -0.15 0
(0.03) (0.03) (-)

GPA, 10th grade -0.23 -0.25 0.01
(0.04) (0.03) (0.03)

GPA, 11th grade -0.35 -0.33 -0.02
(0.03) (0.03) (0.03)

GPA, 12th grade -0.47 -0.33 -0.14
(0.03) (0.02) (0.03)

SAT Math -0.97 -1.02 0.05
(0.03) (0.04) (0.04)

SAT Verbal -0.88 -0.88 0.00
(0.03) (0.03) (0.03)

NCES Math, 10th grade -0.40 -0.40 0
(0.03) (0.03) (-)

NCES Read, 10th grade -0.34 -0.32 -0.03
(0.03) (0.03) (0.02)

NCES Math, 10th grade -0.40 -0.40 0
(0.03) (0.03) (-)

Eng Self-Efficacy 0.28 -0.17 0.45
(0.12) (0.03) (0.12)

Math Self-Efficacy 0.22 -0.15 0.37
(0.11) (0.03) (0.10)

Writing Ability -0.09 -0.01 -0.08
(0.05) (0.02) (0.05)

Control Expectation 0.33 -0.20 0.54
(0.14) (0.04) (0.13)

Action Control 0.36 -0.21 0.57
(0.14) (0.04) (0.14)

Motivation 0.31 -0.18 0.49
(0.12) (0.03) (0.12)

Preparation -0.06 0.00 -0.05
(0.04) (0.02) (0.05)

Math Self-Efficacy (12th Grade) 0.05 -0.06 0.11
(0.05) (0.02) (0.05)

The table displays estimates of µR
t in equation (K-2). SOURCE: (ELS 2002)

the main text and suggest that colleges will struggle to identify highly skilled individuals
(whether in terms of cognitive or noncognitive skills) in the absence of SAT scores.

The dynamic factor model that I estimate in this section allows for an individual-
specific correlation between cognitive and noncognitive skills. This correlation varies
across individuals, because it is parameterized as a function of the same covariates that
govern the initial mean and variance of skills (Table K-1). Figure K-1 depicts the density
of estimated correlation coefficients across individuals in the sample. The mean is 0.52
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Table K-4: Signal-to-Noise Ratios (αt,j

σt,j
)

URM White & Asian Difference
K

(1)
i,12 K

(2)
i,12 K

(1)
i,12 K

(2)
i,12 K

(1)
i,12 K

(2)
i,12

GPA, 9th grade 0.68 0.13 0.86 0.23 -0.17 -0.09
(0.05) (0.06) (0.03) (0.02) (0.05) (0.06)

GPA, 10th grade 0.65 0.17 0.81 0.27 -0.17 -0.10
(0.04) (0.03) (0.03) (0.02) (0.04) (0.03)

GPA, 11th grade 0.56 0.13 0.69 0.19 -0.13 -0.07
(0.04) (0.02) (0.03) (0.02) (0.04) (0.03)

GPA, 12th grade 0.43 0.08 0.50 0.16 -0.08 -0.07
(0.03) (0.02) (0.02) (0.01) (0.03) (0.02)

SAT Math 1.73 0 1.95 0 -0.23 0
(0.1) (-) (0.06) (-) (0.1) (-)

SAT Verbal 1.27 0 1.22 0 0.05 0
(0.08) (-) (0.04) (-) (0.08) (-)

NCES Math, 10th grade 2.54 0 2.04 0 0.49 0
(0.15) (-) (0.06) (-) (0.13) (-)

NCES Reading, 10th grade 1.15 0 1.07 0 0.08 0
(0.07) (-) (0.03) (-) (0.06) (-)

NCES Math, 12th grade 2.41 0 2.18 0 0.23 0
(0.14) (-) (0.07) (-) (0.14) (-)

English Self-Efficacy 0 0.81 0 0.95 0 -0.13
(-) (0.12) (-) (0.03) (-) (0.12)

Math Self-Efficacy 0 0.68 0 0.90 0 -0.22
(-) (0.10) (-) (0.03) (-) (0.11)

Writing Ability 0 0.20 0 0.39 0 -0.19
(-) (0.03) (-) (0.02) (-) (0.04)

Control Expectation 0 1.39 0 1.76 0 -0.38
(-) (0.20) (-) (0.06) (-) (0.20)

Action Control 0 1.49 0 1.65 0 -0.17
(-) (0.21) (-) (0.05) (-) (0.21)

Motivation 0 0.93 0 1.06 0 -0.13
(-) (0.13) (-) (0.04) (-) (0.13)

Preparation 0 0.13 0 0.22 0 -0.09
(-) (0.03) (-) (0.01) (-) (0.03)

Math Self-Efficacy, 12th Grade 0 0.25 0 0.37 0 -0.13
(-) (0.04) (-) (0.03) (-) (0.05)

The table displays estimates of signal-to-noise ratios, αt,j

σt,j
, for all measurements

in the data. GPAs load onto both skill dimensions, standardized tests load only
onto the first skill dimension, and the third set of measurements load only onto the
second skill dimension. SOURCE: (ELS 2002)

and the standard deviation is 0.12. This means that cognitive and noncognitive skills
are quite highly correlated for the average individual in the sample. A high correlation
between the two skills explains why noncognitive skills, as measured by the noncognitive
subscales in the ELS 2002, do not appear to have significant effects on college completion
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Figure K-1: Correlation Coefficients between Cognitive and Noncognitive Skills

The figure shows the distribution of correlation coefficients between cognitive and noncognitive skills
across individuals in the ELS 2002. The correlation coefficients are allowed to vary by URM status, gender,
grade retention status, a single parent dummy, mother’s education, and household income. The mean
correlation coefficient is 0.52 and the standard deviation is 0.12.

at any college (Table K-5). The point estimates for the effects of cognitive skills on college
completion in Table K-5 are similar to the estimates from the one-factor model in Table 10.
As before, there is no statistically significant college completion penalty for URM students
after controlling for where students matriculate to college and their skills at the time of
matriculation.

The findings from the two-skill dynamic factor model are reassuring for two reasons.
First, the finding that noncognitive skills do not matter for college completion conditional
on cognitive skills suggests that the main findings from the paper on how banning the
SAT would affect completion rates are not biased by omitting these skills. Given the null
results found here, it is not obvious that colleges would want to place substantial weight
on noncognitive skills as part of their admissions policies, since this would entail less
weight on cognitive skills and thus lower rates of completion for matriculating students.
It is entirely possible that there are other noncognitive skills, which are not well-measured
in the ELS 2002, that affect college completion. However, incorporating them in the anal-
ysis would require additional information that is not available in the data sources used in
this paper.
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Table K-5: College Completion Model

Estimate Standard Error

Tier 1 -0.26 0.42
Tier 2 0.07 0.16
Tier 3 -0.13 0.10
Tier 4 0.15 0.23
Tier 5 -0.02 0.15
Tier 6 -0.33 0.07

logK
(1)
i,12× Tier 1 0.31 0.16

logK
(1)
i,12× Tier 2 0.27 0.08

logK
(1)
i,12× Tier 3 0.26 0.06

logK
(1)
i,12× Tier 4 0.18 0.10

logK
(1)
i,12× Tier 5 0.27 0.07

logK
(1)
i,12× Tier 6 0.35 0.04

logK
(2)
i,12× Tier 1 0.00 0.10

logK
(2)
i,12× Tier 2 0.00 0.06

logK
(2)
i,12× Tier 3 0.05 0.05

logK
(2)
i,12× Tier 4 0.01 0.07

logK
(2)
i,12× Tier 5 -0.01 0.06

logK
(2)
i,12× Tier 6 0.04 0.03

URM -0.01 0.06
HH Income 0.03 0.01
Mother has College Degree 0.07 0.04

The table displays parameters of the college completion model with two skill
dimensions. The constant and slopes with respect to cognitive and noncognitive
skills are allowed to vary by college tier. Income is measured in hundreds of
dollars per week. SOURCE: (ELS 2002)

This section has also shown that inferences on the bias and informativeness of grades
and the SAT are robust to the inclusion of noncognitive skills. Both the one-skill and two-
skill models provide little evidence that the SAT is biased against URM students. Both
models also show that grades are less informative signals of all students’ cognitive skills
than are standardized tests and that grades are less informative for URM students than
they are for white and Asian students. An absence of bias on the exam coupled with the
relatively low informational content of grades suggests that banning the SAT will harm
highly skilled URM applicants holding university preferences for race constant. In addi-
tion, since URM students enter high school at a substantial disadvantage in noncognitive
skills, there seems to be little evidence that a model that gives universities preferences
over two dimensions of skill together with demographics would generate substantially
different conclusions on the effects of banning the SAT than the main model in the paper.
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It is possible that the ELS 2002 lacks the “right” noncognitive measurements to an-
alyze their influence on college-going and college completion. If future data sets have
high-quality measures of extracurricular skill (say, athletic or musical skill), an important
extension of the model would allow universities to have preferences over cognitive skills,
diversity, and talent in sports, art, or music. As the ability to invest in these extracurric-
ulars is positively correlated with income, a greater reliance on these skills in admissions
may provide students from richer households with another way of gaining admission in
the absence of the SAT.
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